Multi-objective optimization of buckling load and natural frequency in functionally graded porous nanobeams using non-dominated sorting genetic Algorithm-II

被引:0
|
作者
Liu, Hao [1 ]
Basem, Ali [2 ]
Jasim, Dheyaa J. [3 ]
Hashemian, Mohammad [4 ]
Eftekhari, S. Ali [4 ]
Al-fanhrawi, Halah Jawad [5 ]
Abdullaeva, Barno [6 ]
Salahshour, Soheil [7 ,8 ,9 ]
机构
[1] Hengshui Univ, Electromech Res Inst, Hengshui 053000, Peoples R China
[2] Warith Al Anbiyaa Univ, Fac Engn, Karbala 56001, Iraq
[3] Al Amarah Univ Coll, Dept Chem Engn & Petr Ind, Maysan, Iraq
[4] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iran
[5] Al Mustaqbal Univ, Res & Studies Unit, Hillah 51001, Babylon, Iraq
[6] Tashkent State Pedag Univ, Dept Math & Informat Technol, Sci Affairs, Tashkent, Uzbekistan
[7] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye
[8] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye
[9] Piri Reis Univ, Fac Sci & Letters, Istanbul, Turkiye
关键词
Nondominated sorting; Genetic algorithm; Surface effect; Porous nanobeam; Nonlocal strain gradient theory; Artificial neural networks; VIBRATION;
D O I
10.1016/j.engappai.2024.109938
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study investigates the fundamental natural frequency and critical buckling load of Functionally Graded Porous nanobeams supported by an elastic medium, addressing the need for optimized designs in advanced nanostructures. Utilizing a Genetic Algorithm and Non-Dominated Sorting Genetic Algorithm-II, the research aims to identify the Pareto front for these two objectives while incorporating surface effects. The nanobeam is modeled using Nonlocal Strain Gradient Theory and Gurtin-Murdoch surface elasticity theory, with governing equations solved via the Generalized Differential Quadrature Method based on Reddy's Third-order Shear Deformation Theory. Key input parameters, including temperature gradient, residual surface stress, porosity, and elastic foundation properties, are varied to train two Artificial Neural Networks for output prediction. Results indicate that for the fundamental frequency, significant factors include the material length scale and the Pasternak shear foundation parameter, while the critical buckling load is mainly influenced by the temperature gradient and the same material parameters. These findings provide critical insights for designers, allowing them to make informed decisions based on optimal values for eight input parameters.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] A new multi-objective evolutionary algorithm for service restoration: Non-dominated Sorting Genetic Algorithm-II in Subpopulation Tables
    Marques, Leandro Tolomeu
    Augusto London, Joao Bosco, Jr.
    Marcal Camillo, Marcos Henrique
    de Lima, Telma Woerle
    2017 IEEE MANCHESTER POWERTECH, 2017,
  • [22] Acceleration of Superpave Mix Design: Solving Multi-Objective Optimization Problems Using Machine Learning and the Non-Dominated Sorting Genetic Algorithm-II
    Liu, Jian
    Liu, Fangyu
    Wang, Linbing
    TRANSPORTATION RESEARCH RECORD, 2024, : 1863 - 1886
  • [23] A MULTI-OBJECTIVE OPTIMIZATION MODEL BASED ON NON-DOMINATED SORTING GENETIC ALGORITHM
    Fu, H. C.
    Liu, P.
    INTERNATIONAL JOURNAL OF SIMULATION MODELLING, 2019, 18 (03) : 510 - 520
  • [24] A Non-dominated Sorting Firefly Algorithm for Multi-Objective Optimization
    Tsai, Chun-Wei
    Huang, Yao-Ting
    Chiang, Ming-Chao
    2014 14TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA 2014), 2014,
  • [25] Automatic generation control of multi-area power system using multi-objective non-dominated sorting genetic algorithm-II
    Panda, Sidhartha
    Yegireddy, Narendra Kumar
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2013, 53 : 54 - 63
  • [26] Multi-objective traffic signal timing optimization using non-dominated sorting genetic algorithm
    Sun, DZ
    Benekohal, RF
    Waller, ST
    IEEE IV2003: INTELLIGENT VEHICLES SYMPOSIUM, PROCEEDINGS, 2003, : 198 - 203
  • [27] GPU based Non-dominated Sorting Genetic Algorithm-II for Multi-objective Traffic Light Signaling Optimization with Agent Based Modeling
    Shen, Z.
    Wang, K.
    Wang, F. -Y.
    2013 16TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS - (ITSC), 2013, : 1840 - 1845
  • [28] Multi-objective aircraft landing problem: a multi-population solution based on non-dominated sorting genetic algorithm-II
    Shirini, Kimia
    Aghdasi, Hadi S.
    Saeedvand, Saeed
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (17): : 25283 - 25314
  • [29] Multi-Objective optimization for design of an Agrophotovoltaic system under Non-Dominated sorting Genetic algorithm II
    On, Yeongjae
    Kim, Sojung
    Kim, Sumin
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 224
  • [30] Multi-objective optimal cross-training configuration models for an assembly cell using non-dominated sorting genetic algorithm-II
    Li, Qian
    Gong, Jun
    Fung, Richard Y. K.
    Tang, Jiafu
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2012, 25 (11) : 981 - 995