Research on the Preparation of Ultramarine Pigments from Palygorskite

被引:0
|
作者
Feng, Min [1 ]
Wang, Qingyun [1 ]
Wang, Xingpeng [1 ]
Mo, Pengwei [1 ]
Tong, Yongchun [1 ]
机构
[1] Hexi Univ, Coll Chem & Chem Engn, Key Lab Hexi Corridor Resources Utilizat Gansu, Zhangye 734000, Peoples R China
来源
MOLECULES | 2025年 / 30卷 / 04期
关键词
palygorskite; solid-phase method; ultramarine; pigment; FLY-ASH; BLUE; WASTE; RADICALS; ANALOGS; SULFUR; COTTON; COLOR; CAGES;
D O I
10.3390/molecules30040870
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ultramarine is a highly favored blue inorganic pigment. It is non-toxic with a deep color and widely used in architecture, plastics, coatings, fine arts and cosmetics. In this study, ultramarine pigment was synthesized using palygorskite, anhydrous sodium carbonate and sulfur as the raw materials through the high-temperature solid-phase method. The incorporation of palygorskite into the synthesis process greatly improves the reaction efficiency and reduces the amount of sulfur. When the mass ratio of palygorskite, anhydrous sodium carbonate and sulfur is 2:6:3, the resulting ultramarine pigment exhibits optimal chrominance. Notably, this sulfur ratio is substantially lower than that used in conventional processes, highlighting the efficiency and potential environmental benefits of this approach. The XRD, FT-IR, UV visible spectroscopy and SEM reveal that the synthetically produced blue pigments possess a sodalite structure, incorporating S3- and S2- radicals. Stability assessments indicated a marked improvement in the acid resistance of the dark blue pigment upon modification with dodecyltrimethoxysilane, with no notable color degradation observed in either neutral or alkaline conditions. The refined formulation and synthesis process not only optimize the production of ultramarine pigment, but also pave the way for enhanced durability and broader application prospects in various industries.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Multisensor hyperspectral imaging approach for the microchemical analysis of ultramarine blue pigments
    M. González-Cabrera
    K. Wieland
    E. Eitenberger
    A. Bleier
    L. Brunnbauer
    A. Limbeck
    H. Hutter
    C. Haisch
    B. Lendl
    A. Domínguez-Vidal
    M. J. Ayora-Cañada
    Scientific Reports, 12
  • [32] Preparation and characterization of ultramarine blue pigments from fly ash by using the X-ray photoelectron spectroscopy (XPS) for the determination of chemical states of sulphur in chromophores
    Skvarlova, Anna
    Kanuchova, Maria
    Kozakova, Lubica
    Valusova, Eva
    Holub, Marian
    Skvarla, Jiri
    MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 284 : 283 - 288
  • [33] Sonochemical preparation of palygorskite nanoparticles
    Darvishi, Zahra
    Morsali, Ali
    APPLIED CLAY SCIENCE, 2011, 51 (1-2) : 51 - 53
  • [34] Preparation and characterization of polyacrylamide/palygorskite
    Chen, Yan
    Zhao, Yijiang
    Zhou, Shouyong
    Chu, Xiaozhong
    Yang, Lianli
    Xing, Weihong
    APPLIED CLAY SCIENCE, 2009, 46 (02) : 148 - 152
  • [35] GMELINS INVENTION OF ARTIFICIAL ULTRAMARINE RESEARCH
    WANKMULL.A
    SCHMAUDE.E
    ARCHIV DER PHARMAZIE UND BERICHTE DER DEUTSCHEN PHARMAZEUTISCHEN GESSELSCHAFT, 1971, 304 (12): : 342 - &
  • [36] HYDROTHERMAL PREPARATION OF ULTRAMARINE UNDER MILD CONDITIONS
    KATSUKI, K
    YOSHINO, Y
    NIPPON KAGAKU KAISHI, 1989, (03) : 364 - 367
  • [37] Ultramarine made from gangue
    Zhang, ZM
    Ren, JG
    Wang, ZW
    PROGRESS OF FINE CHEMISTRY AND FUNCTIONAL POLYMERS, 1998, : 140 - 141
  • [38] New ultramarine from Nubiola
    不详
    SURFACE COATINGS INTERNATIONAL, 2015, 98 (01): : 20 - 20
  • [39] Preparation of various color ultramarine from zeolite A under environment-friendly conditions
    Kowalak, S
    Jankowska, A
    Laczkowska, S
    CATALYSIS TODAY, 2004, 90 (1-2) : 167 - 172
  • [40] New articles on the structural research of the ultramarine.
    Leschewski, K
    Moller, H
    BERICHTE DER DEUTSCHEN CHEMISCHEN GESELLSCHAFT, 1932, 65 (02): : 250 - 253