Gradient-Free Aeroacoustic Shape Optimization Using Large Eddy Simulation

被引:0
|
作者
Hamedi, Mohsen [1 ]
Vermeire, Brian [1 ]
机构
[1] Concordia Univ, Dept Mech Ind & Aerosp Engn, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Overall Sound Pressure Level; Gradient-Free; Optimization; High-Order; Large Eddy Simulation; Flux Reconstruction; FLOW; DESIGN;
D O I
10.2514/1.J064364
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
We present an aeroacoustic shape optimization framework that relies on high-order flux reconstruction, the gradient-free Mesh Adaptive Direct Search optimization algorithm, and large eddy simulation. Our parallel implementation ensures consistent runtime for each optimization iteration, regardless of the number of design parameters, provided that sufficient resources are available. The objective is to minimize the overall sound pressure level (OASPL) at a near-field observer by computing it directly from the flowfield. We evaluate this framework across three problems. First, an open deep cavity is considered at a freestream Mach number of M infinity=0.15 and Reynolds number of Re=1500, reducing the OASPL by 12.9 dB. Next, we considered tandem cylinders at Re=1000 and M infinity=0.2, achieving over 11 dB of noise reduction by optimizing cylinder spacing and diameter ratio. Lastly, a baseline NACA0012 airfoil at Re=23,000 and M infinity=0.2 is optimized to generate a new four-digit NACA airfoil at an appropriate angle of attack to minimize the OASPL while ensuring the baseline time-averaged lift coefficient is maintained and prevents any increase in the baseline time-averaged drag coefficient. The OASPL and mean drag coefficient are reduced by 5.7 dB and more than 7%, respectively. These results highlight the feasibility and effectiveness of our aeroacoustic shape optimization framework.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Optimization of Monopod Offshore Tower under Uncertainties with Gradient-Based and Gradient-Free Optimization Algorithms
    Togan, Vedat
    ADVANCES IN STRUCTURAL ENGINEERING, 2012, 15 (12) : 2021 - 2032
  • [42] Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free Optimization
    Perrone, Valerio
    Shen, Huibin
    Zolic, Aida
    Shcherbatyi, Iaroslav
    Ahmed, Amr
    Bansal, Tanya
    Donini, Michele
    Winkelmolen, Fela
    Jenatton, Rodolphe
    Faddoul, Jean Baptiste
    Pogorzelska, Barbara
    Miladinovic, Miroslav
    Kenthapadi, Krishnaram
    Seeger, Matthias
    Archambeau, Cedric
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 3463 - 3471
  • [43] Asynchronous Gossip-Based Gradient-Free Method for Multiagent Optimization
    Yuan, Deming
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [44] Computational optimization of a UFAD system using large eddy simulation
    Rahmaninia, R.
    Amani, E.
    Abbassi, A.
    SCIENTIA IRANICA, 2020, 27 (06) : 2871 - 2888
  • [45] Computational optimization of a UFAD system using large eddy simulation
    Rahmaninia R.
    Amani E.
    Abbassi A.
    Amani, E. (eamani@aut.ac.ir), 1600, Sharif University of Technology (27): : 2871 - 2888
  • [46] XDream: Finding preferred stimuli for visual neurons using generative networks and gradient-free optimization
    Xiao, Will
    Kreiman, Gabriel
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (06)
  • [47] ANALYSIS OF AEROACOUSTIC GENERATED FROM A ROTATING TIRE WITH A LONGITUDINAL GROOVE USING LARGE-EDDY SIMULATION
    Asada, Kengo
    Ito, Kimie
    Sekimoto, Satoshi
    Fujii, Kozo
    Koishi, Masataka
    Ikeda, Toshiyuki
    PROCEEDINGS OF ASME 2021 FLUIDS ENGINEERING DIVISION SUMMER MEETING (FEDSM2021), VOL 1, 2021,
  • [48] Guided deterministic policy optimization with gradient-free policy parameters information
    Shen, Chun
    Zhu, Sheng
    Han, Shuai
    Gong, Xiaoyu
    Lu, Shuai
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 231
  • [49] GRADIENT-FREE OPTIMIZATION IN THERMOACOUSTICS: APPLICATION TO A LOW-ORDER MODEL
    Reumschuessel, Johann Moritz
    von Saldern, Jakob G. R.
    Li, Yiqing
    Paschereit, Christian Oliver
    Orchini, Alessandro
    PROCEEDINGS OF ASME TURBO EXPO 2021: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 3A, 2021,
  • [50] GenAttack: Practical Black-box Attacks with Gradient-Free Optimization
    Alzantot, Moustafa
    Sharma, Yash
    Chakraborty, Supriyo
    Zhang, Huan
    Hsieh, Cho-Jui
    Srivastava, Mani B.
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 1111 - 1119