Enhancing torsional behavior of RC beams: The potential of ultra-high performance concrete (UHPC)

被引:0
|
作者
Zhou, Cong [1 ]
Wang, Jianqun [1 ]
Shao, Xudong [2 ]
Li, Lifeng [2 ]
Qiu, Minghong [3 ]
机构
[1] Hunan Univ Sci & Technol, Sch Civil Engn, Xiangtan 411201, Peoples R China
[2] Hunan Univ, Coll Civil Engn, Changsha 410082, Peoples R China
[3] Univ Tokyo, Inst Ind Sci, Tokyo, Japan
基金
中国国家自然科学基金;
关键词
UHPC; Strengthening; Torsion; Experimental investigation; FE modeling; Theoretical analysis; FIBER-REINFORCED CONCRETE; FLEXURAL BEHAVIOR; COMPOSITE; SHRINKAGE; STRENGTH; MODEL;
D O I
10.1016/j.compstruct.2025.118950
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The potential of ultra-high performance concrete (UHPC) for enhancing the torsional behavior of RC beams is evaluated in this study, as a significant gap has been identified on this topic in the present. Pure torsion tests were conducted on nine specimens, including one un-strengthened and eight UHPC-strengthened RC beams. Refined finite element (FE) models were established using ATENA software to simulate the full-range torsional behavior of the specimens. Results from experiments and FE simulations indicate that the utilization of UHPC significantly improves the torsional resistance of RC beams, with an increase of 136.5 %similar to 488.5 % in cracking torque and an increase of 21.8 %similar to 593.2 % in ultimate torque. Two-sided wrapping scheme is not recommended since the failure mechanisms in those beams will induce considerable safety risks. Three-sided wrapping scheme could serve as an alternative solution to the fully-wrapped scheme if the latter cannot be realized due to space limitation. The surfaces of the RC beam should be roughened prior to the application of UHPC layers to ensure reliable bonding performance between them. The decision to incorporate steel bars into the UHPC layers should comprehensively consider the costs, constraints in dimensions and increase in torsional capacity. Finally, a theoretical formula was proposed for predicting the torsional capacity of UHPC-strengthened RC beams utilizing 4-sided wrapping configuration. The experimental results from six fully-wrapped strengthened beams in this study were used to validate the proposed formula. The mean value and standard deviation of the ratio between the theoretically obtained and experimentally obtained results were 1.10 and 0.16, respectively, indicating that the proposed formula provides a satisfactory prediction of the torsional capacity.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Performance-Based Fibre Design for Ultra-High Performance Concrete (UHPC)
    Lanwer, Jan-Paul
    Empelmann, Martin
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [42] Flexural behavior of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete
    Al-Osta, M. A.
    Isa, M. N.
    Baluch, M. H.
    Rahman, M. K.
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 134 : 279 - 296
  • [43] ULTRA-HIGH PERFORMANCE CONCRETE (UHPC) WITH SUBSTITUTION OF CEMENTITIOUS MATRIX BY WASTE
    Maria Dolores, Rubio-Cintas
    Maria Eugenia, Parron-Rubio
    Francisca, Perez-Garcia
    Jose Manuel, Garcia-Manrique
    Antonio, Gonzalez-Herrera
    6TH INTERNATIONAL CONFERENCE ON MECHANICAL MODELS IN STRUCTURAL ENGINEERING, CMMOST 2021, 2 EDITION, 2022, : 140 - 147
  • [44] Investigation on bonding between timber and ultra-high performance concrete (UHPC)
    Schaefers, Martin
    Seim, Werner
    CONSTRUCTION AND BUILDING MATERIALS, 2011, 25 (07) : 3078 - 3088
  • [45] Rheological characteristics of Ultra-High performance concrete (UHPC) incorporating bentonite
    Li, Keke
    Leng, Yong
    Xu, Liuliu
    Zhang, Junjie
    Liu, Kangning
    Fan, Dingqiang
    Yu, Rui
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 349
  • [46] Intelligent design and manufacturing of ultra-high performance concrete (UHPC)-A review
    Fan, Dingqiang
    Zhu, Jinyun
    Fan, Mengxin
    Lu, Jian-Xin
    Chu, S. H.
    Dong, Enlai
    Yu, Rui
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 385
  • [47] Enhancement of local concrete compression performance by incorporating ultra-high performance concrete (UHPC) tube
    Wang, Lifeng
    Wu, Haiqi
    Liu, Long
    Xiao, Ziwang
    MULTIDISCIPLINE MODELING IN MATERIALS AND STRUCTURES, 2022, 18 (05) : 856 - 878
  • [48] Shear behavior of ultra-high performance concrete
    Pourbaba, Masoud
    Joghataie, Abdolreza
    Mirmiran, Amir
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 183 : 554 - 564
  • [49] Shear behavior of RC pile cap beams strengthened using ultra-high performance concrete reinforced with steel mesh fabric
    Fayed, Sabry
    El-din, Ahmed Badr
    Basha, Ali
    Mansour, Walid
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17
  • [50] Interfacial properties between ultra-high performance concrete (UHPC) and steel: From static performance to fatigue behavior
    Zhang, Boshan
    Yu, Jiangjiang
    Chen, Weizhen
    Sun, Huahuai
    Chen, Shuaikun
    Wang, Hui
    ENGINEERING STRUCTURES, 2022, 273