A 7T MRI-Guided Learning Method for Automatic Hippocampal Subfield Segmentation on Routine 3T MRI

被引:0
|
作者
Wang, Linjin [1 ]
He, Jiangtao [1 ]
Geng, Guohong [1 ]
Zhong, Lisha [2 ]
Li, Xinwei [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Chongqing Engn Res Ctr Med Elect & Informat Techno, Chongqing 400065, Peoples R China
[2] Southwest Med Univ, Sch Med Informat & Engn, Luzhou 646000, Sichuan, Peoples R China
来源
IEEE ACCESS | 2025年 / 13卷
基金
中国国家自然科学基金;
关键词
Magnetic resonance imaging; Feature extraction; Image segmentation; Decoding; Training; Accuracy; Hippocampus; Semantics; Knowledge engineering; Fuses; Hippocampal subfield segmentation; knowledge distillation; 7T MRI; U-Net; guided learning;
D O I
10.1109/ACCESS.2025.3548726
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate segmentation of hippocampal subfields in MRI scans is crucial for aiding in the diagnosis of various neurological diseases and for monitoring brain states. However, due to limitations of imaging systems and the inherent complexity of hippocampal subfield delineation, achieving accurate hippocampal subfield delineation on routine 3T MRI is highly challenging. In this paper, we propose a novel Guided Learning Network (GLNet) that leverages 7T MRI to enhance the accuracy of hippocampal subfield segmentation on routine 3T MRI. GLNet aligns and learns shared features between 3T MRI and 7T MRI through a modeling approach based on domain-specific and domain-shared feature learning, leveraging the features of 7T MRI to guide learning for 3T MRI features. In this process, we also introduce a Multi-Feature Attention Fusion (MFAF) block to integrate both specific and shared features from each modality. By leveraging an attention mechanism, MFAF adaptively focuses on relevant information between the specific and shared features within the same modality, thereby reducing the impact of irrelevant information. Additionally, we further proposed an Online Knowledge Distillation (OLKD) method to distill detailed knowledge from 7T MRI into 3T MRI, enhancing the feature representation capability and robustness of the 3T MRI segmentation model. Our method was validated on PAIRED 3T-7T HIPPOCAMPAL SUBFIELD DATASET, and the experimental results demonstrate that GLNet outperforms other competitive methods.
引用
收藏
页码:42428 / 42440
页数:13
相关论文
共 50 条
  • [31] T2 HYPERINTENSE REGIONS ON MRI IN GLIOMAS: A COMPARISON BETWEEN ROUTINE CLINICAL MRI AND 7T MRI
    Schmitz-Abecassis, B.
    Van Osch, M. J. P.
    Dirven, L.
    Taphoorn, M. J. B.
    Koekkoek, J. A. F.
    de Bresser, J.
    NEURO-ONCOLOGY, 2021, 23 : 27 - 27
  • [32] Value of 7T MRI and post-processing in patients with nonlesional 3T MRI undergoing epilepsy presurgical evaluation
    Wang, Irene
    Oh, Sehong
    Bluemcke, Ingmar
    Coras, Roland
    Krishnan, Balu
    Kim, Sanghoon
    McBride, Aaron
    Grinenko, Olesya
    Lin, Yicong
    Overmyer, Margit
    Aung, Tin Tun
    Lowe, Mark
    Larvie, Mykol
    Alexopoulos, Andreas V.
    Bingaman, William
    Gonzalez-Martinez, Jorge A.
    Najm, Imad
    Jones, Stephen E.
    EPILEPSIA, 2020, 61 (11) : 2509 - 2520
  • [33] No Increased Mercury Release from Dental Restorations at 1.5T, 3T, or 7T MRI
    Burkett, Brian J.
    Rasmussen, Chad M.
    Fillmore, W. Jonathan
    McDonald, Jennifer S.
    McDonald, Robert J.
    Fagan, Andrew J.
    Erdahl, Sarah A.
    Eckdahl, Steven J.
    Welker, Kirk M.
    MAGNETIC RESONANCE IN MEDICINE, 2024, 91 (02) : 660 - 669
  • [34] A cascaded nested network for 3T brain MR image segmentation guided by 7T labeling *
    Wei, Jie
    Wu, Zhengwang
    Wang, Li
    Bui, Toan Duc
    Qu, Liangqiong
    Yap, Pew-Thian
    Xia, Yong
    Li, Gang
    Shen, Dinggang
    PATTERN RECOGNITION, 2022, 124
  • [35] Evaluation of the MRI compatibility of PET detectors modules for organ-specific inserts in a 3T and 7T MRI scanner
    Schmidt, Fabian P.
    Allen, Magdelena S.
    Ladebeck, Ralf
    Breuer, Johannes
    Judenhofer, Martin
    Schmand, Matthias
    Catana, Ciprian
    Pichler, Bernd J.
    MEDICAL PHYSICS, 2024, 51 (02) : 991 - 1006
  • [36] Deep Learning Segmentation of the Nucleus Basalis of Meynert on 3T MRI
    Doss, D. J.
    Johnson, G. W.
    Narasimhan, S.
    Shless, J. S.
    Jiang, J. W.
    Gonzaez, H. F. J.
    Paulo, D. L.
    Lucas, A.
    Davis, K. A.
    Chang, C.
    Morgan, V. L.
    Constantinidis, C.
    Dawant, B. M.
    Englot, D. J.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2023, 44 (09) : 1020 - 1025
  • [37] MRI-guided percutaneous sclerotherapy of venous malformations: initial clinical experience using a 3T MRI system
    O'Mara, Daniel M.
    Berges, Alexandra J.
    Fritz, Jan
    Weiss, Clifford R.
    CLINICAL IMAGING, 2020, 65 (65) : 8 - 14
  • [38] In-bore setup and software for 3T MRI-guided transperineal prostate biopsy
    Tokuda, Junichi
    Tuncali, Kemal
    Iordachita, Iulian
    Song, Sang-Eun
    Fedorov, Andriy
    Oguro, Sota
    Lasso, Andras
    Fennessy, Fiona M.
    Tempany, Clare M.
    Hata, Nobuhiko
    PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (18): : 5823 - 5840
  • [39] MRI-guided vacuum-assisted breast biopsy at 3T: initial experience
    Sreenivas, M.
    BREAST CANCER RESEARCH, 2013, 15
  • [40] Comparison of Multiple Sclerosis Cortical Lesion Types Detected by Multicontrast 3T and 7T MRI
    Maranzano, J.
    Dadar, M.
    Rudko, D. A.
    De Nigris, D.
    Elliott, C.
    Gati, J. S.
    Morrow, S. A.
    Menon, R. S.
    Collins, D. L.
    Arnold, D. L.
    Narayanan, S.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (07) : 1162 - 1169