Multiscale modeling of viscoelastic shell structures with artificial neural networks

被引:0
|
作者
Geiger, Jeremy [1 ]
Wagner, Werner [1 ]
Freitag, Steffen [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Struct Anal, Kaiserstr 12, D-76131 Karlsruhe, Germany
关键词
Multiscale modeling; Shell structures; Artificial neural networks; Viscoelasticity; Sobolev training; Finite element method; COMPUTATIONAL HOMOGENIZATION; CONSTITUTIVE MODEL; BEHAVIOR; SOLIDS;
D O I
10.1007/s00466-025-02613-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For acquiring the effective response of structures with complex underlying microscopic properties, numerical homogenization schemes have widely been studied in the past decades. In this paper, an artificial neural network (ANN) is trained on effective viscoelastic strain-stress data, which is numerically acquired from a consistent homogenization scheme for shell representative volume elements (RVE). The ANN serves as a feasible surrogate model to overcome the bottleneck of the computationally expensive calculation of the coupled multiscale problem. We show that an ANN can be trained solely on uniaxial strain-stress data gathered from creep and relaxation tests, as well as cyclic loading scenarios on an RVE. Furthermore, the amount of data is reduced by including derivative information into the ANN training process, formally known as Sobolev training. Studies at the material point level reveal, that the ANN material model is capable of approximating arbitrary multiaxial stress-strain states, as well as unknown loading paths. Lastly, the material model is implemented into a finite element program, where the potential of the approach in comparison with multiscale and full-scale 3D solutions is analyzed within challenging numerical examples.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Modeling Axonal Plasticity in Artificial Neural Networks
    Ryland, James
    NEURAL PROCESSING LETTERS, 2021, 53 (02) : 1119 - 1146
  • [22] THE ARTIFICIAL NEURAL NETWORKS AND THE DRYING PROCESS MODELING
    JINESCU, G
    LAVRIC, V
    DRYING TECHNOLOGY, 1995, 13 (5-7) : 1579 - 1586
  • [23] Modeling soil collapse by artificial neural networks
    Basma A.A.
    Kallas N.
    Geotechnical & Geological Engineering, 2004, 22 (3) : 427 - 438
  • [24] Modeling Axonal Plasticity in Artificial Neural Networks
    James Ryland
    Neural Processing Letters, 2021, 53 : 1119 - 1146
  • [25] A regression modeling method of the artificial neural networks
    Li, P
    Mu, XF
    ELECTRONIC IMAGING AND MULTIMEDIA SYSTEMS II, 1998, 3561 : 398 - 402
  • [26] Modeling of pain using artificial neural networks
    Haeri, M
    Asemani, D
    Gharibzadeh, S
    JOURNAL OF THEORETICAL BIOLOGY, 2003, 220 (03) : 277 - 284
  • [27] Physics-Informed Neural Networks for shell structures
    Bastek, Jan-Hendrik
    Kochmann, Dennis M.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2023, 97
  • [28] MULTISCALE MODELING OF VISCOELASTIC PLANT TISSUE
    Ghysels, P.
    Samaey, G.
    Van Liedekerke, P.
    Tijskens, E.
    Ramon, H.
    Roose, D.
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2010, 8 (04) : 379 - 396
  • [29] Artificial neural networks for predicting the response of structural systems with viscoelastic dampers
    Vaidyanathan, CV
    Kamatchi, P
    Ravichandran, R
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2005, 20 (04) : 294 - 302
  • [30] Modeling of performance of an artillery shell using neural networks
    Ghosh, AK
    Raisinghani, SC
    Dehury, SK
    JOURNAL OF SPACECRAFT AND ROCKETS, 2002, 39 (03) : 470 - 472