A machine learning model for the early prediction of ovarian cancer using real world data

被引:0
|
作者
de la Oliva Roque, Victor Manuel [1 ]
Esteban-Medina, Alberto [1 ]
Alejos Collado, Laura [1 ]
Louceras Munecas, Carlos [1 ,2 ]
Munoyerro-Muniz, Dolores [3 ]
Villegas, Roman [3 ]
Dopazo Blazquez, Joaquin [1 ,2 ,4 ]
机构
[1] Andalusian Publ Fdn Progress & Hlth FPS, Andalusian Platform Computat Med, Seville, Spain
[2] Univ Seville, Inst Biomed Seville, Univ Hosp Virgen del Rocio, IBiS,CSIC, Seville, Spain
[3] Serv Andaluz Salud, Subdirecc Tecn Asesora Gest Informac, Seville, Spain
[4] Hosp Virgen del Rocio, CDCA, FPS, ELIXIR ES,Fundac Progreso & Salud FPS, Seville, Spain
来源
FEBS OPEN BIO | 2024年 / 14卷
关键词
Machine-learning; real world data; ovarian cancer; disease prediction; pre-screening;
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
ST006
引用
收藏
页码:14 / 14
页数:1
相关论文
共 50 条
  • [21] A study of real-world micrograph data quality and machine learning model robustness
    Zhong, Xiaoting
    Gallagher, Brian
    Eves, Keenan
    Robertson, Emily
    Mundhenk, T. Nathan
    Han, T. Yong-Jin
    NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [22] A study of real-world micrograph data quality and machine learning model robustness
    Xiaoting Zhong
    Brian Gallagher
    Keenan Eves
    Emily Robertson
    T. Nathan Mundhenk
    T. Yong-Jin Han
    npj Computational Materials, 7
  • [23] Development of a Machine Learning Algorithm for Early Diagnosis of Persons with Von Willebrand Disease Using Real-World Data
    Sidonio, Robert F., Jr.
    Lu, Anan
    Hale, Sarah
    Caicedo, Jorge
    Bullano, Michael
    Xing, Shan
    BLOOD, 2022, 140 : 2713 - 2714
  • [24] Early Stroke Prediction Using Machine Learning
    Sharma, Chetan
    Sharma, Shamneesh
    Kumar, Mukesh
    Sodhi, Ankur
    2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 890 - 894
  • [25] Early Prediction of Sepsis using Machine Learning
    Shankar, Anuraag
    Diwan, Mufaddal
    Singh, Snigdha
    Nahrpurawala, Husain
    Bhowmick, Tanusri
    2021 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2021), 2021, : 837 - 842
  • [26] Prediction of survival outcomes in patients with epithelial ovarian cancer using machine learning methods
    Paik, E. Sun
    Lee, Jeong-Won
    Park, Jeong-Yeol
    Kim, Ju-Hyun
    Kim, Mijung
    Kim, Tae-Joong
    Choi, Chet Hun
    Kim, Byoung-Gie
    Bae, Duk-Soo
    Seo, Sung Wook
    JOURNAL OF GYNECOLOGIC ONCOLOGY, 2019, 30 (04)
  • [27] Optimized machine learning model using Decision Tree for cancer prediction
    Chandrasegar, T.
    Vutukuri, Sai Brahma Nikhilesh
    2019 INNOVATIONS IN POWER AND ADVANCED COMPUTING TECHNOLOGIES (I-PACT), 2019,
  • [28] A machine learning model for early diagnosis of type 1 Gaucher disease using real-life data
    Tenenbaum, Avraham
    Revel-Vilk, Shoshana
    Gazit, Sivan
    Roimi, Michael
    Gill, Aidan
    Gilboa, Dafna
    Paltiel, Ora
    Manor, Orly
    Shalev, Varda
    Chodick, Gabriel
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2024, 175
  • [29] External validation of a severe dysphagia prediction model using real world data
    Patel, Vinod
    Humbert-Vidan, Laia
    De Felice, Francesca
    Guerrero-Urbano, Teresa
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S1183 - S1184
  • [30] Development of a prediction model for hypereosinophilic syndrome using real-world data
    Carstens, Donna
    Ogbogu, Princess
    Chung, Yen
    Cheng, Mu
    Cook, Erin
    Mu, Fan
    Judson, Elizabeth
    Chen, Jingyi
    Wang, Travis
    Chen, Zhuo
    Khoury, Paneez
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2024, 153 (02) : AB216 - AB216