Kernel estimation for quadratic functional of long memory linear processes with infinite variance
被引:0
|
作者:
Liu, Hui
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Stat, Shanghai, Peoples R ChinaEast China Normal Univ, Sch Stat, Shanghai, Peoples R China
Liu, Hui
[1
]
Xu, Fangjun
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, KLATASDS MOE, Sch Stat, Shanghai 200062, Peoples R China
NYU Shanghai, NYU ECNU Inst Math Sci, Shanghai 200062, Peoples R ChinaEast China Normal Univ, Sch Stat, Shanghai, Peoples R China
Xu, Fangjun
[2
,3
]
机构:
[1] East China Normal Univ, Sch Stat, Shanghai, Peoples R China
[2] East China Normal Univ, KLATASDS MOE, Sch Stat, Shanghai 200062, Peoples R China
[3] NYU Shanghai, NYU ECNU Inst Math Sci, Shanghai 200062, Peoples R China
Linear process;
domain of attraction of stable law;
kernel estimator;
quadratic functional;
long memory;
BANDWIDTH CONSISTENCY;
ENTROPY;
UNIFORM;
D O I:
10.1080/10485252.2024.2443733
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Let X = {X-n : n is an element of N} be a long memory linear process with innovations in the domain of attraction of an alpha-stable law (0 < alpha <= 2). Assume that the linear process X has a bounded probability density function f (x). Then, under certain conditions, we estimate the quadratic functional integral(R) f(2)(x) dx of the linear process X by using the kernel estimator T-n(h(n)) = 2/n(n - 1)h(n) Sigma(1 <= j<i <= n) K(X-i - X-j/h(n)). Moreover, using the Delta method, we obtain the corresponding results for the kernel estimator of the quadratic Renyi entropy - ln(integral(R) f(2)(x) dx). When innovations are symmetric alpha-stable random variables, we give the simulation study for these two kernel estimators.
机构:
CUNY Bernard M Baruch Coll, Dept Stat & Comp Informat, New York, NY 10010 USACUNY Bernard M Baruch Coll, Dept Stat & Comp Informat, New York, NY 10010 USA
机构:
Inst Natl Polytech Felix Houphouet Boigny, UMRI Math & Nouvelles Technol Informat, Yamoussoukro, Cote Ivoire
Inst Natl Polytech Felix Houphouet Boigny, UMRI Math & Nouvelles Technol Informat, BP 1093, Yamoussoukro, Cote IvoireInst Natl Polytech Felix Houphouet Boigny, UMRI Math & Nouvelles Technol Informat, Yamoussoukro, Cote Ivoire
Keita, Filamory Abraham Michael
Hili, Ouagnina
论文数: 0引用数: 0
h-index: 0
机构:
Inst Natl Polytech Felix Houphouet Boigny, UMRI Math & Nouvelles Technol Informat, Yamoussoukro, Cote IvoireInst Natl Polytech Felix Houphouet Boigny, UMRI Math & Nouvelles Technol Informat, Yamoussoukro, Cote Ivoire
Hili, Ouagnina
Kanga, Serge-Hippolyte Arnaud
论文数: 0引用数: 0
h-index: 0
机构:
Inst Natl Polytech Felix Houphouet Boigny, UMRI Math & Nouvelles Technol Informat, Yamoussoukro, Cote IvoireInst Natl Polytech Felix Houphouet Boigny, UMRI Math & Nouvelles Technol Informat, Yamoussoukro, Cote Ivoire