Kernel estimation for quadratic functional of long memory linear processes with infinite variance

被引:0
|
作者
Liu, Hui [1 ]
Xu, Fangjun [2 ,3 ]
机构
[1] East China Normal Univ, Sch Stat, Shanghai, Peoples R China
[2] East China Normal Univ, KLATASDS MOE, Sch Stat, Shanghai 200062, Peoples R China
[3] NYU Shanghai, NYU ECNU Inst Math Sci, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear process; domain of attraction of stable law; kernel estimator; quadratic functional; long memory; BANDWIDTH CONSISTENCY; ENTROPY; UNIFORM;
D O I
10.1080/10485252.2024.2443733
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X = {X-n : n is an element of N} be a long memory linear process with innovations in the domain of attraction of an alpha-stable law (0 < alpha <= 2). Assume that the linear process X has a bounded probability density function f (x). Then, under certain conditions, we estimate the quadratic functional integral(R) f(2)(x) dx of the linear process X by using the kernel estimator T-n(h(n)) = 2/n(n - 1)h(n) Sigma(1 <= j<i <= n) K(X-i - X-j/h(n)). Moreover, using the Delta method, we obtain the corresponding results for the kernel estimator of the quadratic Renyi entropy - ln(integral(R) f(2)(x) dx). When innovations are symmetric alpha-stable random variables, we give the simulation study for these two kernel estimators.
引用
收藏
页数:21
相关论文
共 50 条