On Diophantine Equations 2x ± (2kp)y = z2 and-2x + (2k3)y = z2

被引:0
|
作者
Li, Yuan [1 ]
Lloyd, Torre [1 ]
Clinton, Angel [1 ]
机构
[1] Winston Salem State Univ, Dept Math, Winston Salem, NC 27110 USA
关键词
Catalan equation; elliptic curve;
D O I
10.3390/math12244027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we solve three Diophantine equations: 2x +/-(2kp)y=z2 and -2x+(2k3)y=z2 with k >= 0 and prime p equivalent to +/- 3(mod8). We obtain all the non-negative integer solutions by using elementary methods and the database of elliptic curves in "The L-functions and modular forms database" (LMFDB).
引用
收藏
页数:6
相关论文
共 50 条
  • [21] On the Diophantine equation f (x) f (y) = f (z2)
    Zhang, Yong
    Cai, Tianxin
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (01): : 31 - 41
  • [22] 不定方程x2+xy+y2=z2与3x2+y2=z2的整数组解的引用
    李春雷
    数学学习与研究, 2015, (01) : 71 - 72
  • [23] Representing n as n = x plus y + z with x2 + y2 + z2 a square
    Huang, Chao
    Sun, Zhi-Wei
    ARCHIV DER MATHEMATIK, 2023, 121 (03) : 231 - 239
  • [24] ON THE EQUATION X4+MX2Y2+Y4=Z2
    BREMNER, A
    JONES, JW
    JOURNAL OF NUMBER THEORY, 1995, 50 (02) : 268 - 298
  • [25] On the Exponential Diophantine equation 5x - 3y = z2
    Thongnak, Sutthiwat
    Kaewong, Theeradach
    Chuayjan, Wariam
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (01): : 99 - 102
  • [26] On the Classical Diophantine Equation x4 + y4 + kx2y2 = z2
    Stoenchev, Miroslav
    Todorov, Venelin
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE20), 2021, 2333
  • [27] A note on the Diophantine equation f (x) f (y) = f (z2)
    Zhang, Yong
    Cai, Tianxin
    PERIODICA MATHEMATICA HUNGARICA, 2015, 70 (02) : 209 - 215
  • [28] Nonlinear Diophantine equation 11x+13y = z2
    Sugandha, A.
    Tripena, A.
    Prabowo, A.
    Sukono, F.
    INDONESIAN OPERATIONS RESEARCH ASSOCIATION - INTERNATIONAL CONFERENCE ON OPERATIONS RESEARCH 2017, 2018, 332
  • [29] REPRESENTATIONS OF Z2 X Z2 GROUP IN FIELD OF CHARACTERISTIC 2
    BASHEV, VA
    DOKLADY AKADEMII NAUK SSSR, 1961, 141 (05): : 1015 - &
  • [30] Monochromatic Solutions to x plus y = z2
    Green, Ben Joseph
    Lindqvist, Sofia
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2019, 71 (03): : 579 - 605