Low-rank optimization on Tucker tensor varieties

被引:0
|
作者
Gao, Bin [1 ]
Peng, Renfeng [1 ,2 ]
Yuan, Ya-xiang [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, State Key Lab Sci & Engn Comp, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Low-rank optimization; Tucker decomposition; Algebraic variety; Tangent cone; Rank-adaptive strategy; RIEMANNIAN OPTIMIZATION; COMPLETION; ALGORITHMS;
D O I
10.1007/s10107-024-02186-w
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In the realm of tensor optimization, the low-rank Tucker decomposition is crucial for reducing the number of parameters and for saving storage. We explore the geometry of Tucker tensor varieties-the set of tensors with bounded Tucker rank-which is notably more intricate than the well-explored matrix varieties. We give an explicit parametrization of the tangent cone of Tucker tensor varieties and leverage its geometry to develop provable gradient-related line-search methods for optimization on Tucker tensor varieties. In practice, low-rank tensor optimization suffers from the difficulty of choosing a reliable rank parameter. To this end, we incorporate the established geometry and propose a Tucker rank-adaptive method that aims to identify an appropriate rank with guaranteed convergence. Numerical experiments on tensor completion reveal that the proposed methods are in favor of recovering performance over other state-of-the-art methods. The rank-adaptive method performs the best across various rank parameter selections and is indeed able to find an appropriate rank.
引用
收藏
页数:51
相关论文
共 50 条
  • [21] Low-Rank Tensor Completion by Approximating the Tensor Average Rank
    Wang, Zhanliang
    Dong, Junyu
    Liu, Xinguo
    Zeng, Xueying
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 4592 - 4600
  • [22] Tensor Factorization for Low-Rank Tensor Completion
    Zhou, Pan
    Lu, Canyi
    Lin, Zhouchen
    Zhang, Chao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (03) : 1152 - 1163
  • [23] Low-rank tensor completion based on non-convex logDet function and Tucker decomposition
    Shi, Chengfei
    Huang, Zhengdong
    Wan, Li
    Xiong, Tifan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (06) : 1169 - 1177
  • [24] Low-rank tensor completion based on non-convex logDet function and Tucker decomposition
    Chengfei Shi
    Zhengdong Huang
    Li Wan
    Tifan Xiong
    Signal, Image and Video Processing, 2021, 15 : 1169 - 1177
  • [25] Low-Rank Tensor Completion Method for Implicitly Low-Rank Visual Data
    Ji, Teng-Yu
    Zhao, Xi-Le
    Sun, Dong-Lin
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1162 - 1166
  • [26] Iterative tensor eigen rank minimization for low-rank tensor completion
    Su, Liyu
    Liu, Jing
    Tian, Xiaoqing
    Huang, Kaiyu
    Tan, Shuncheng
    INFORMATION SCIENCES, 2022, 616 : 303 - 329
  • [27] Sparse and Low-Rank Tensor Decomposition
    Shah, Parikshit
    Rao, Nikhil
    Tang, Gongguo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [28] NONPARAMETRIC LOW-RANK TENSOR IMPUTATION
    Bazerque, Juan Andres
    Mateos, Gonzalo
    Giannakis, Georgios B.
    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 876 - 879
  • [29] Low-Rank Regression with Tensor Responses
    Rabusseau, Guillaume
    Kadri, Hachem
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [30] MULTIRESOLUTION LOW-RANK TENSOR FORMATS
    Mickelin, Oscar
    Karaman, Sertac
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (03) : 1086 - 1114