An Algebraic Preconditioner for the Exactly Divergence-Free Discontinuous Galerkin Method for Stokes

被引:0
|
作者
Rhebergen, Sander [1 ]
Southworth, Ben S. [2 ]
机构
[1] Univ Waterloo, Dept Appl Math, Waterloo, ON, Canada
[2] Los Alamos Natl Lab, Los Alamos, NM USA
基金
加拿大自然科学与工程研究理事会;
关键词
discontinuous Galerkin; hybridization; preconditioning; Stokes equations; FINITE-ELEMENT METHODS; H(DIV);
D O I
10.1002/num.70001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an algebraic preconditioner for the exactly divergence-free discontinuous Galerkin (DG) discretization of Cockburn, Kanschat, and Sch & ouml;tzau [J. Sci. Comput., 31 (2007), pp. 61-73] and Wang and Ye [SIAM J. Numer. Anal., 45 (2007), pp. 1269-1286] for the Stokes problem. The exactly divergence-free DG method uses finite elements that use an H(div)$$ H\left(\operatorname{div}\right) $$-conforming basis, thereby significantly complicating its solution by iterative methods. Several preconditioners for this Stokes discretization has been developed, but each is based on specialized solvers or decompositions. To avoid requiring custom solvers, we hybridize the H(div)$$ H\left(\operatorname{div}\right) $$-conforming finite element so that the velocity lives in a standard L2$$ {L}<^>2 $$-DG space, and present a simple algebraic preconditioner for the extended hybridized system. The proposed preconditioner is optimal in mesh size h$$ h $$, effective in 2d and 3d, and only relies on standard relaxation and algebraic multigrid methods available in many packages. Furthermore, the Schur complement approximation is robust in element order k$$ k $$, although more AMG cycles are needed on the velocity block when increasing k$$ k $$.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Locally divergence-free central discontinuous Galerkin methods for ideal MHD equations
    Yakovlev, Sergey
    Xu, Liwei
    Li, Fengyan
    JOURNAL OF COMPUTATIONAL SCIENCE, 2013, 4 (1-2) : 80 - 91
  • [32] A globally divergence-free weak Galerkin method for Brinkman equations
    Zhang, Li
    Feng, Minfu
    Zhang, Jian
    APPLIED NUMERICAL MATHEMATICS, 2019, 137 : 213 - 229
  • [33] An exactly divergence-free finite element method for a generalized Boussinesq problem
    Oyarzua, Ricardo
    Qin, Tong
    Schoetzau, Dominik
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (03) : 1104 - 1135
  • [34] A numerical study of a semi-algebraic multilevel preconditioner for the local discontinuous Galerkin method
    Castillo, Paul E.
    Velazquez, Esov S.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 74 (02) : 255 - 268
  • [35] A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics
    Greif, Chen
    Li, Dan
    Schoetzau, Dominik
    Wei, Xiaoxi
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (45-48) : 2840 - 2855
  • [36] A divergence-free reconstruction of the nonconforming virtual element method for the Stokes problem ?
    Liu, Xin
    Li, Rui
    Nie, Yufeng
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 372
  • [37] A divergence-free finite element method for the Stokes problem with boundary correction
    Liu, Haoran
    Neilan, Michael
    Baris Otus, M.
    JOURNAL OF NUMERICAL MATHEMATICS, 2023, 31 (02) : 105 - 123
  • [38] A cutFEM divergence-free discretization for the stokes problem
    Liu, Haoran
    Neilan, Michael
    Olshanskii, Maxim
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (01) : 143 - 165
  • [39] Divergence-free WKB method
    Hyouguchi, T
    Adachi, S
    Ueda, M
    PHYSICAL REVIEW LETTERS, 2002, 88 (17) : 1704041 - 1704044
  • [40] Slope limiting the velocity field in a discontinuous Galerkin divergence-free two-phase flow solvern
    Landet, Tormod
    Mardal, Kent-Andre
    Mortensen, Mikael
    COMPUTERS & FLUIDS, 2020, 196