A control strategy for seismic noise reduction on advanced LIGO gravitational-wave detector

被引:0
|
作者
Di Fronzo, C. [1 ]
Driggers, J. [2 ]
Warner, J. [2 ]
Schwartz, E. [3 ]
Lantz, B. [4 ]
Pele, A. [5 ]
Biscans, S. [7 ]
Mow-Lowry, C. M. [6 ]
Mittleman, R. [7 ]
机构
[1] Univ Western Australia, OzGrav, Crawley, WA 6009, Australia
[2] LIGO Hanford Observ, Richland, WA 99352 USA
[3] Trinity Coll, Phys Dept, 300 Summit St, Hartford, CT 06106 USA
[4] Stanford Univ, Stanford, CA 94305 USA
[5] LIGO Livingston Observ, Livingston, LA 70754 USA
[6] Univ Birmingham, Birmingham B15 2TT, England
[7] MIT, LIGO, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
LIGO; control; seismic; CPS;
D O I
10.1088/1361-6382/adab5f
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The differential seismic motion between the internal seismic isolation platforms on the advanced laser interferometer gravitational wave observatory, affects the sensitivity of the detector at lower frequencies (below 1 Hz), because each platform moves independently. This induces noise inside the cavities of the auxiliary optics placed on the platforms, which translates into a higher control effort to maintain stability and resonance. This paper shows that the differential motion between the platforms can be efficiently measured by the capacitive position sensors installed on each platform. We investigate how we can use these sensors to modify the seismic control configuration and help reduce the differential motion between the platforms, reduce the control efforts and help maintain the cavities in resonance. Reduced differential motion is expected to reduce control noise thereby improving sensitivity and improve detector duty cycle by preventing actuator saturation, resulting in loss of optical cavity resonance.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] THE ROCHESTER GRAVITATIONAL-WAVE DETECTOR
    BOCKO, MF
    CROMAR, MW
    DOUGLASS, DH
    GRAM, RQ
    JOHNSON, WW
    KARIM, M
    LAM, CC
    MACALUSO, D
    MARSDEN, JR
    MUHLFELDER, B
    NARICI, L
    ZUCKER, M
    JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1984, 17 (08): : 694 - 703
  • [32] SKYHOOK GRAVITATIONAL-WAVE DETECTOR
    BRAGINSKY, VB
    THORNE, KS
    NATURE, 1985, 316 (6029) : 610 - 612
  • [33] MUNICH GRAVITATIONAL-WAVE DETECTOR
    BILLING, H
    WINKLER, W
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1976, 33 (02): : 665 - 680
  • [34] The effects of LIGO detector noise on a 15-dimensional Markov-chain Monte Carlo analysis of gravitational-wave signals
    Raymond, V.
    van der Sluys, M. V.
    Mandel, I.
    Kalogera, V.
    Roever, C.
    Christensen, N.
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (11)
  • [35] LIGO AND VIRGO GRAVITATIONAL-WAVE DETECTORS AND THEIR SCIENCE REACH
    Buskulic, Damir
    Mandel, Ilya
    ACTA PHYSICA POLONICA B, 2013, 44 (12): : 2413 - 2445
  • [36] LOCALIZATION OF SHORT DURATION GRAVITATIONAL-WAVE TRANSIENTS WITH THE EARLY ADVANCED LIGO AND VIRGO DETECTORS
    Essick, Reed
    Vitale, Salvatore
    Katsavounidis, Erik
    Vedovato, Gabriele
    Klimenko, Sergey
    ASTROPHYSICAL JOURNAL, 2015, 800 (02):
  • [37] Nonlinear optical effects in the LIGO gravitational-wave interferometer
    Willems, P
    TOPICAL PROBLEMS OF NONLINEAR WAVE PHYSICS, 2006, 5975
  • [38] LIGO relocation would boost gravitational-wave science
    Feder, Toni
    PHYSICS TODAY, 2010, 63 (12) : 31 - 34
  • [39] Demonstration of the optical AC coupling technique at the advanced LIGO gravitational wave detector
    Kaufer, Steffen
    Kasprzack, Marie
    Frolov, Valera
    Willke, Benno
    CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (14)
  • [40] Optimizing the regimes of the Advanced LIGO gravitational wave detector for multiple source types
    Kondrashov, I. S.
    Simakov, D. A.
    Khalili, F. Ya.
    Danilishin, S. L.
    PHYSICAL REVIEW D, 2008, 78 (06):