A control strategy for seismic noise reduction on advanced LIGO gravitational-wave detector

被引:0
|
作者
Di Fronzo, C. [1 ]
Driggers, J. [2 ]
Warner, J. [2 ]
Schwartz, E. [3 ]
Lantz, B. [4 ]
Pele, A. [5 ]
Biscans, S. [7 ]
Mow-Lowry, C. M. [6 ]
Mittleman, R. [7 ]
机构
[1] Univ Western Australia, OzGrav, Crawley, WA 6009, Australia
[2] LIGO Hanford Observ, Richland, WA 99352 USA
[3] Trinity Coll, Phys Dept, 300 Summit St, Hartford, CT 06106 USA
[4] Stanford Univ, Stanford, CA 94305 USA
[5] LIGO Livingston Observ, Livingston, LA 70754 USA
[6] Univ Birmingham, Birmingham B15 2TT, England
[7] MIT, LIGO, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
LIGO; control; seismic; CPS;
D O I
10.1088/1361-6382/adab5f
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The differential seismic motion between the internal seismic isolation platforms on the advanced laser interferometer gravitational wave observatory, affects the sensitivity of the detector at lower frequencies (below 1 Hz), because each platform moves independently. This induces noise inside the cavities of the auxiliary optics placed on the platforms, which translates into a higher control effort to maintain stability and resonance. This paper shows that the differential motion between the platforms can be efficiently measured by the capacitive position sensors installed on each platform. We investigate how we can use these sensors to modify the seismic control configuration and help reduce the differential motion between the platforms, reduce the control efforts and help maintain the cavities in resonance. Reduced differential motion is expected to reduce control noise thereby improving sensitivity and improve detector duty cycle by preventing actuator saturation, resulting in loss of optical cavity resonance.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Reduction of shot noise in an interference gravitational-wave detector
    Troitskii, YV
    QUANTUM ELECTRONICS, 2001, 31 (04) : 367 - 370
  • [2] Gravitational-Wave Observations by Advanced LIGO and Virgo
    Schmidt, P.
    16TH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS (TAUP 2019), 2020, 1468
  • [3] A guide to LIGO-Virgo detector noise and extraction of transient gravitational-wave signals
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abraham, S.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adya, V. B.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Alford, T.
    Allen, G.
    Allocca, A.
    Aloy, M. A.
    Altin, P. A.
    Amato, A.
    Ananyeva, A.
    Anderson, S. B.
    Anderson, W. G.
    Angelova, S., V
    Antier, S.
    Appert, S.
    Arai, K.
    Araya, M. C.
    Areeda, J. S.
    Arene, M.
    Arnaud, N.
    Arun, K. G.
    Ascenzi, S.
    Ashton, G.
    Aston, S. M.
    Astone, P.
    Aubin, F.
    Aufmuth, P.
    AultONeal, K.
    Austin, C.
    Avendano, V
    Avila-Alvarez, A.
    Babak, S.
    Bacon, P.
    Badaracco, F.
    Bader, M. K. M.
    Bae, S.
    Baker, P. T.
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (05)
  • [4] The path to the enhanced and advanced LIGO gravitational-wave detectors
    Smith, J. R.
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (11)
  • [5] Facilities Advanced LIGO set for gravitational-wave hunt
    Gwynne, Peter
    PHYSICS WORLD, 2015, 28 (11) : 9 - 9
  • [6] Achieving resonance in the Advanced LIGO gravitational-wave interferometer
    Staley, A.
    Martynov, D.
    Abbott, R.
    Adhikari, R. X.
    Arai, K.
    Ballmer, S.
    Barsotti, L.
    Brooks, A. F.
    DeRosa, R. T.
    Dwyer, S.
    Effler, A.
    Evans, M.
    Fritschel, P.
    Frolov, V. V.
    Gray, C.
    Guido, C. J.
    Gustafson, R.
    Heintze, M.
    Hoak, D.
    Izumi, K.
    Kawabe, K.
    King, E. J.
    Kissel, J. S.
    Kokeyama, K.
    Landry, M.
    McClelland, D. E.
    Miller, J.
    Mullavey, A.
    O'Reilly, B.
    Rollins, J. G.
    Sanders, J. R.
    Schofield, R. M. S.
    Sigg, D.
    Slagmolen, B. J. J.
    Smith-Lefebvre, N. D.
    Vajente, G.
    Ward, R. L.
    Wipf, C.
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (24)
  • [7] Gravitational-wave searches in the era of Advanced LIGO and Virgo
    Caudill, Sarah
    Kandhasamy, Shivaraj
    Lazzaro, Claudia
    Matas, Andrew
    Sieniawska, Magdalena
    Stuver, Amber L.
    MODERN PHYSICS LETTERS A, 2021, 36 (23)
  • [8] Suspensions thermal noise in the LIGO gravitational wave detector
    González, G
    CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (21) : 4409 - 4435
  • [10] Angular instability due to radiation pressure in the LIGO gravitational-wave detector
    Hirose, Eiichi
    Kawabe, Keita
    Sigg, Daniel
    Adhikari, Rana
    Saulson, Peter R.
    APPLIED OPTICS, 2010, 49 (18) : 3474 - 3484