Self-Supervised Medical Image Segmentation Using Deep Reinforced Adaptive Masking

被引:1
|
作者
Xu, Zhenghua [1 ]
Liu, Yunxin [1 ]
Xu, Gang [2 ]
Lukasiewicz, Thomas [3 ,4 ]
机构
[1] Hebei Univ Technol, Sch Hlth Sci & Biomed Engn, State Key Lab Reliabil & Intelligence Elect Equipm, Tianjin 300401, Peoples R China
[2] Hebei Univ Technol, Sch Artificial Intelligence, Tianjin 300401, Peoples R China
[3] Univ Oxford, Dept Comp Sci, Oxford OX1 3QG, England
[4] Vienna Univ Technol, Inst Log & Computat, A-1040 Vienna, Austria
基金
中国国家自然科学基金;
关键词
Biomedical imaging; Image reconstruction; Image segmentation; Task analysis; Adaptation models; Self-supervised learning; Training; medical image segmentation; adaptive image masking; deep reinforcement learning;
D O I
10.1109/TMI.2024.3436608
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Self-supervised learning aims to learn transferable representations from unlabeled data for downstream tasks. Inspired by masked language modeling in natural language processing, masked image modeling (MIM) has achieved certain success in the field of computer vision, but its effectiveness in medical images remains unsatisfactory. This is mainly due to the high redundancy and small discriminative regions in medical images compared to natural images. Therefore, this paper proposes an adaptive hard masking (AHM) approach based on deep reinforcement learning to expand the application of MIM in medical images. Unlike predefined random masks, AHM uses an asynchronous advantage actor-critic (A3C) model to predict reconstruction loss for each patch, enabling the model to learn where masking is valuable. By optimizing the non-differentiable sampling process using reinforcement learning, AHM enhances the understanding of key regions, thereby improving downstream task performance. Experimental results on two medical image datasets demonstrate that AHM outperforms state-of-the-art methods. Additional experiments under various settings validate the effectiveness of AHM in constructing masked images.
引用
收藏
页码:180 / 193
页数:14
相关论文
共 50 条
  • [41] Edge-Net: A Self-supervised Medical Image Segmentation Model Based on Edge Attention
    Wang, Miao
    Zheng, Zechen
    Fan, Chao
    Wang, Congqian
    He, Xuelei
    He, Xiaowei
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT XV, 2025, 15045 : 241 - 254
  • [42] VIS-MAE: An Efficient Self-supervised Learning Approach on Medical Image Segmentation and Classification
    Liu, Zelong
    Tieu, Andrew
    Patel, Nikhil
    Soultanidis, George
    Deyer, Louisa
    Wang, Ying
    Huver, Sean
    Zhou, Alexander
    Mei, Yunhao
    Fayad, Zahi A.
    Deyer, Timothy
    Mei, Xueyan
    MACHINE LEARNING IN MEDICAL IMAGING, PT II, MLMI 2024, 2025, 15242 : 95 - 107
  • [43] Self-Supervised Learning for Annotation Efficient Biomedical Image Segmentation
    Rettenberger, Luca
    Schilling, Marcel
    Elser, Stefan
    Bohland, Moritz
    Reischl, Markus
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2023, 70 (09) : 2519 - 2528
  • [44] Self-Supervised Deep Fisheye Image Rectification Approach using Coordinate Relations
    Hosono, Masaki
    Simo-Serra, Edgar
    Sonoda, Tomonari
    PROCEEDINGS OF 17TH INTERNATIONAL CONFERENCE ON MACHINE VISION APPLICATIONS (MVA 2021), 2021,
  • [45] Hyperspectral image super resolution using deep internal and self-supervised learning
    Liu, Zhe
    Han, Xian-Hua
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2024, 9 (01) : 128 - 141
  • [46] PHONEME SEGMENTATION USING SELF-SUPERVISED SPEECH MODELS
    Strgar, Luke
    Harwath, David
    2022 IEEE SPOKEN LANGUAGE TECHNOLOGY WORKSHOP, SLT, 2022, : 1067 - 1073
  • [47] Random image masking and in-batch feature mixing for self-supervised learning
    Li, Guiyu
    Yin, Jun
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 264
  • [48] Self-Supervised Feature Learning Based on Spectral Masking for Hyperspectral Image Classification
    Liu, Weiwei
    Liu, Kai
    Sun, Weiwei
    Yang, Gang
    Ren, Kai
    Meng, Xiangchao
    Peng, Jiangtao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [49] Evolved Part Masking for Self-Supervised Learning
    Feng, Zhanzhou
    Zhang, Shiliang
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 10386 - 10395
  • [50] Evolved Hierarchical Masking for Self-Supervised Learning
    Feng, Zhanzhou
    Zhang, Shiliang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025, 47 (02) : 1013 - 1027