Speech Imagery Decoding Using EEG Signals and Deep Learning: A Survey

被引:0
|
作者
Zhang, Liying [1 ]
Zhou, Yueying [2 ]
Gong, Peiliang [1 ]
Zhang, Daoqiang [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Artificial Intelligence, Key Lab Brain Machine Intelligence Technol, Minist Educ, Nanjing 211106, Peoples R China
[2] Liaocheng Univ, Sch Math Sci, Liaocheng 252000, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Electroencephalography; Decoding; Task analysis; Reviews; Deep learning; Speech; Recording; Brain-computer interface (BCI); deep learning (DL); electroencephalography (EEG); speech imagery (SI); BRAIN-COMPUTER INTERFACE; IMAGINED SPEECH; CLASSIFICATION; WERNICKE; STATE;
D O I
10.1109/TCDS.2024.3431224
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Speech imagery (SI)-based brain-computer interface (BCI) using electroencephalogram (EEG) signal is a promising area of research for individuals with severe speech production disorders. Recent advances in deep learning (DL) have led to significant improvements in this domain. However, there is a lack of comprehensive review that covers the application of DL methods for decoding imagined speech via EEG. In this article, we survey SI and DL literature to address critical questions regarding preferred paradigms, preprocessing necessity, optimal input formulations, and current trends in DL-based techniques. Specifically, we first search major databases across science and engineering disciplines for relevant studies. Then, we analyze the DL-based techniques applied in SI decoding from five main perspectives: dataset, preprocessing, input formulation, DL architecture, and performance evaluation. Moreover, we summarize the key findings of this work and propose a set of practical recommendations. Finally, we highlight the practical challenges of DL-based imagined speech decoding and suggest future research directions.
引用
收藏
页码:22 / 39
页数:18
相关论文
共 50 条
  • [31] Decoding Part-of-Speech from Human EEG Signals
    Murphy, Alex
    Bohnet, Bernd
    McDonald, Ryan
    Noppeney, Uta
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 2201 - 2210
  • [32] A Novel Deep Learning Scheme for Motor Imagery EEG Decoding Based on Spatial Representation Fusion
    Yang, Jun
    Ma, Zhengmin
    Wang, Jin
    Fu, Yunfa
    IEEE ACCESS, 2020, 8 : 202100 - 202110
  • [33] Decoding Multi-Class Motor Imagery From Unilateral Limbs Using EEG Signals
    Rong, Fenqi
    Yang, Banghua
    Guan, Cuntai
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 3399 - 3409
  • [34] A brief survey on human activity recognition using motor imagery of EEG signals
    Mahalungkar, Seema Pankaj
    Shrivastava, Rahul
    Angadi, Sanjeevkumar
    ELECTROMAGNETIC BIOLOGY AND MEDICINE, 2024, 43 (04) : 312 - 327
  • [35] An efficient shallow convolutional decoding network for motor imagery EEG signals
    Li W.
    Xu G.
    Zhang K.
    Zhang S.
    Zhao L.
    Li H.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2023, 57 (10): : 11 - 19
  • [36] Temporal Pyramid Pooling for Decoding Motor-Imagery EEG Signals
    Ha, Kwon-Woo
    Jeong, Jin-Woo
    IEEE ACCESS, 2021, 9 : 3112 - 3125
  • [37] Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review
    Hamdi Altaheri
    Ghulam Muhammad
    Mansour Alsulaiman
    Syed Umar Amin
    Ghadir Ali Altuwaijri
    Wadood Abdul
    Mohamed A. Bencherif
    Mohammed Faisal
    Neural Computing and Applications, 2023, 35 : 14681 - 14722
  • [38] Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review
    Altaheri, Hamdi
    Muhammad, Ghulam
    Alsulaiman, Mansour
    Amin, Syed Umar
    Altuwaijri, Ghadir Ali
    Abdul, Wadood
    Bencherif, Mohamed A.
    Faisal, Mohammed
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (20): : 14681 - 14722
  • [39] Classification of EEG signals related to real and imagery knee movements using deep learning for brain computer interfaces
    Lee, Ye Ji
    Lee, Hyun Ju
    Tae, Ki Sik
    TECHNOLOGY AND HEALTH CARE, 2023, 31 (03) : 933 - 942
  • [40] Machine Learning Approaches for MDD Detection and Emotion Decoding Using EEG Signals
    Duan, Lijuan
    Duan, Huifeng
    Qiao, Yuanhua
    Sha, Sha
    Qi, Shunai
    Zhang, Xiaolong
    Huang, Juan
    Huang, Xiaohan
    Wang, Changming
    FRONTIERS IN HUMAN NEUROSCIENCE, 2020, 14