Stability of the Timoshenko beam equation with one weakly degenerate local Kelvin-Voigt damping

被引:0
|
作者
Liu, Ruijuan [1 ]
Zhang, Qiong [1 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing Key Lab MCAACI, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
ELASTIC-SYSTEMS; DECAY-RATE; SHEAR;
D O I
10.1002/zamm.202300262
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Timoshenko beam equation with locally distributed Kelvin-Voigt damping, which affects either the shear stress or the bending moment. The damping coefficient exhibits a singularity, causing its derivative to be discontinuous. By using the frequency domain method and multiplier technique, we prove that the associated semigroup is polynomial stability. Specifically, regardless of whether the local Kelvin-Voigt damping acts on the shear stress or the bending moment, the system decays polynomially with rate t-(1)/(2).
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Timoshenko systems with Cattaneo law and partial Kelvin-Voigt damping: well-posedness and stability
    Enyi, Cyril Dennis
    APPLICABLE ANALYSIS, 2023, 102 (18) : 4955 - 4971
  • [42] STABILITY OF THE WAVE EQUATION WITH LOCALIZED KELVIN-VOIGT DAMPING AND BOUNDARY DELAY FEEDBACK
    Nicaise, Serge
    Pignotti, Cristina
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (03): : 791 - 813
  • [43] EVENTUAL DIFFERENTIABILITY OF A STRING WITH LOCAL KELVIN-VOIGT DAMPING
    Liu, Kangsheng
    Liu, Zhuangyi
    Zhang, Qiong
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (02) : 443 - 454
  • [44] Energy decay for a coupled wave system with one local Kelvin-Voigt damping
    Zhang, Hua-Lei
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (04) : 1310 - 1327
  • [45] Effects of Locally Distributed Kelvin-Voigt Damping on Parametric Instability of Timoshenko Beams
    Chen, Wei-Ren p
    Chen, Chun-Sheng
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2014, 14 (06)
  • [46] An inverse problem for the transmission wave equation with Kelvin-Voigt damping
    Zhao, Zhongliu
    Zhang, Wensheng
    APPLICABLE ANALYSIS, 2023, 102 (13) : 3710 - 3732
  • [47] Asymptotic behavior of thermoelastic systems of laminated Timoshenko beams with Kelvin-Voigt damping
    Quispe Mendez, Teofanes
    Cabanillas, Victor R.
    Feng, Baowei
    APPLICABLE ANALYSIS, 2024, 103 (18) : 3400 - 3424
  • [48] EFFECT OF KELVIN-VOIGT DAMPING ON SPECTRUM ANALYSIS OF A WAVE EQUATION
    Lu, Liqing
    Zhao, Liyan
    Hu, Jing
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [49] A Numerical Method of the Euler-Bernoulli Beam with Optimal Local Kelvin-Voigt Damping
    Yu, Xin
    Ren, Zhigang
    Zhang, Qian
    Xu, Chao
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [50] Stability of a Nonlinear Axially Moving String With the Kelvin-Voigt Damping
    Shahruz, S. M.
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2009, 131 (01): : 0145011 - 0145014