Enhanced thermoelectric properties of Bi1.92Li0.08Sr2Co2Oy/x wt% SiC composites

被引:0
|
作者
Park, K. [1 ]
Hong, H. Y. [1 ]
Gwon, S. Y. [1 ]
Jeon, E. C. [2 ]
Sabri, M. F. M. [3 ]
机构
[1] Sejong Univ, Fac Nanotechnol & Adv Mat Engn, Seoul 05006, South Korea
[2] Sejong Univ, Dept Climate & Energy, Seoul 05006, South Korea
[3] Univ Malaya, Dept Mech Engn, Kuala Lumpur 50603, Malaysia
关键词
Energy; Climate change; Spark plasma sintering; Composites; Seebeck coefficient; Thermoelectric properties; RAY PHOTOELECTRON-SPECTROSCOPY; THERMAL-CONDUCTIVITY; SEEBECK COEFFICIENT; CRYSTAL-STRUCTURE; POWER-FACTOR; PERFORMANCE; NANOCOMPOSITES; NANOSTRUCTURE; BI2SR2CO2OY; CERAMICS;
D O I
10.1016/j.inoche.2024.113596
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
In this work, Bi1.92Li0.08Sr2Co2Oy/x wt% SiC (1.0 <= x <= 4.0 wt%) composites are fabricated through a solid-state reaction followed by spark plasma sintering. The resulting composites exhibit plate-like grains and high density. The addition of SiC nanoparticles reduces electrical conductivity due to decreased hole mobility and increases the Seebeck coefficient due to an enhanced scattering factor and effective mass. Furthermore, the incorporation of SiC nanoparticles significantly enhances phonon scattering, thereby reducing phonon thermal conductivity. The Bi1.92Li0.08Sr2Co2Oy/2.0 wt% SiC composite exhibits the largest ZT of 0.17 at 973 K due to its high Seebeck coefficient and low thermal conductivity. Our results demonstrate that incorporating SiC nanoparticles is a highly effective strategy for enhancing the thermoelectric properties of Bi1.92Li0.08Sr2Co2Oy.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Enhancing the thermoelectric properties of Bi2Ba2Co2Oy by dispersing SiC nanoparticles based on Na element doping
    Ruan, Chuangchuang
    Fan, Mengmeng
    Zhang, Yuewen
    Song, Hongzhang
    Li, Xin-Jian
    Hao, Haoshan
    CERAMICS INTERNATIONAL, 2020, 46 (05) : 6899 - 6905
  • [42] Impact of Sr(BO2)2 Dopant on Power Factor of Bi2Sr2Co1.8Oy Thermoelectric
    A. S. Kuzanyan
    N. G. Margiani
    V. V. Zhghamadze
    I. G. Kvartskhava
    G. A. Mumladze
    G. R. Badalyan
    Journal of Contemporary Physics (Armenian Academy of Sciences), 2021, 56 : 146 - 149
  • [43] Fabrication and thermoelectric properties of c-axis oriented nanocrystalline Bi2Sr2Co2Oy thin films
    Wang, Shufang
    Chen, Shanshan
    Yan, Guoying
    Liu, Fuqiang
    Dai, Shouyu
    Wang, Jianglong
    Yu, Wei
    Fu, Guangsheng
    THIN SOLID FILMS, 2013, 534 : 168 - 171
  • [44] Optimization of thermoelectric properties in layered Bi2Sr2Co2Oy via high-magnetic-field sintering
    Huang, Yanan
    Zhao, Bangchuan
    Lin, Shuai
    Sun, Yuping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 705 : 745 - 748
  • [45] High temperature thermoelectric properties of Bi2-xNaxSr2Co2Oy ceramics
    He, Q. L.
    Li, S. Y.
    Gao, F.
    Zhu, Z.
    Hu, X.
    Song, H. Z.
    MODERN PHYSICS LETTERS B, 2015, 29 (27):
  • [46] Enhanced thermoelectric properties of Cu2−δSe nanopowder dispersed Bi2Ba2Co2Oy ceramics
    Ruijuan Cao
    Erying Li
    Qiujun Hu
    Zheng Zhu
    Yan Zhang
    Xinjian Li
    Xing Hu
    Hongzhang Song
    Applied Physics A, 2018, 124
  • [47] Enhanced thermoelectric properties of Cu2-Se nanopowder dispersed Bi2Ba2Co2Oy ceramics
    Cao, Ruijuan
    Li, Erying
    Hu, Qiujun
    Zhu, Zheng
    Zhang, Yan
    Li, Xinjian
    Hu, Xing
    Song, Hongzhang
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2018, 124 (10):
  • [48] Influence of sintering temperature and Li+/Mg2+ doping on the thermoelectric properties of Bi2-2xLixMgxSr2Co2Oy
    Hong, Ho Young
    Gwon, Soyeon
    Kim, Donghoon
    Park, Kyeongsoon
    ADVANCES IN APPLIED CERAMICS, 2022, 121 (04) : 124 - 131
  • [49] Influence of Microstructure on the Electrical Properties of Bi2Sr2Co2Oy Compound
    Gao Wen-Bin
    Zhang Li
    Tang Xin-Feng
    JOURNAL OF INORGANIC MATERIALS, 2010, 25 (06) : 621 - 625
  • [50] Thermoelectric properties of Bi1.5Pb0.5Sr2-xLaxCo2Oy polycrystalline materials
    Ye Jinqin
    Li Haidong
    He Qinglin
    RARE METALS, 2011, 30 (05) : 501 - 504