Room-Temperature WSe2 Impact Ionization Field-Effect Transistor Based on a Stepwise Homojunction

被引:0
|
作者
Chen, Yue [1 ,2 ]
Wei, Wenrui [1 ,2 ]
Wang, Hailu [1 ,2 ]
Bai, Yuzhuo [1 ,2 ]
Zhang, Tao [1 ,2 ]
Zhang, Kun [1 ,2 ]
Duan, Shikun [1 ,2 ]
Yu, Yiye [1 ]
Zhao, Tiange [1 ,2 ]
Xie, Runzhang [1 ,2 ]
Wang, Peng [1 ,2 ]
Martyniuk, Piotr [3 ]
Wang, Zhen [1 ,2 ]
Hu, Weida [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai 200083, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Mil Univ Technol, Inst Appl Phys, 2 Kaliskiego St, PL-00908 Warsaw, Poland
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
avalanche breakdown; homojunction; impact ionization; subthreshold swing; van der waals materials;
D O I
10.1002/smll.202412466
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The low subthreshold swing (SS) below the Boltzmann thermionic limitation (60 mV dec(-1)) is crucial for the development of power-efficient transistors. Recently, impact ionization field-effect transistors (II-FETs), which leverage carrier avalanche multiplication, have emerged as an attractive method for achieving ultra-steep SS, high on-state current density, and significant drain current on-off ratio. However, current II-FETs face challenges due to complex fabrication processes, hindering the development of future array devices. In this work, a novel II-FET is reported based on a stepwise van der Waals WSe2 homojunction. The device exhibits a low SS of 3.09 mV dec(-1) and a high multiplication factor exceeding 10(4) at room temperature. Additionally, by lowering the operating temperature, the SS can be further improved to 0.25 mV dec(-1). Along with the improved subthreshold characteristics, the device shows a current on/off ratio >10(5) and an on-state current density of similar to 1 mu A mu m(-1). The findings presented here offer a promising approach to developing energy-efficient electronic devices for future technological generations.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A steep switching WSe2 impact ionization field-effect transistor
    Choi, Haeju
    Li, Jinshu
    Kang, Taeho
    Kang, Chanwoo
    Son, Hyeonje
    Jeon, Jongwook
    Hwang, Euyheon
    Lee, Sungjoo
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [2] A steep switching WSe2 impact ionization field-effect transistor
    Haeju Choi
    Jinshu Li
    Taeho Kang
    Chanwoo Kang
    Hyeonje Son
    Jongwook Jeon
    Euyheon Hwang
    Sungjoo Lee
    Nature Communications, 13
  • [3] WSe2 Negative Capacitance Field-Effect Transistor for Glucose Sensing
    Wu, Xian
    Gao, Sen
    Wang, Jing
    2024 IEEE 24TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY, NANO 2024, 2024, : 17 - 20
  • [4] WSe2 Negative Capacitance Field-Effect Transistor for Biosensing Applications
    Wu, Xian
    Gao, Sen
    Xiao, Lei
    Wang, Jing
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (32) : 42597 - 42607
  • [5] Anisotropy of impact ionization in WSe2 field effect transistors
    Taeho Kang
    Haeju Choi
    Jinshu Li
    Chanwoo Kang
    Euyheon Hwang
    Sungjoo Lee
    Nano Convergence, 10
  • [6] Anisotropy of impact ionization in WSe2 field effect transistors
    Kang, Taeho
    Choi, Haeju
    Li, Jinshu
    Kang, Chanwoo
    Hwang, Euyheon
    Lee, Sungjoo
    NANO CONVERGENCE, 2023, 10 (01)
  • [7] A field-effect transistor-based room-temperature quantum current source
    Cheung, Kin P.
    O'Sullivan, Barry J.
    APPLIED PHYSICS LETTERS, 2023, 122 (18)
  • [8] Room-temperature oxide field-effect transistor with buried channel
    Misewich, JA
    Schrott, AG
    APPLIED PHYSICS LETTERS, 2000, 76 (24) : 3632 - 3634
  • [9] Steep-Slope WSe2 Negative Capacitance Field-Effect Transistor
    Si, Mengwei
    Jiang, Chunsheng
    Chung, Wonil
    Du, Yuchen
    Alam, Muhammad A.
    Ye, Peide D.
    NANO LETTERS, 2018, 18 (06) : 3682 - 3687
  • [10] Logic Computing Field-Effect Transistors Based on a Monolayer WSe2 Homojunction for the Semi-adder and Decoder
    Li, Xueping
    Wang, Zhuojun
    Tang, Xiaojie
    Yuan, Peize
    Li, Lin
    Shen, Chenhai
    Jiang, Yurong
    Song, Xiaohui
    Xia, Congxin
    NANO LETTERS, 2024, 24 (35) : 11132 - 11139