Effect of interfacial layer incorporation in electroplated copper-graphene composites on thermal conductivity

被引:0
|
作者
Ahn, Jin Yeong [1 ]
Ryu, Hyesu [1 ]
Kim, Ye-eun [1 ]
Kim, Junwoo [1 ]
Lee, Seog Woo [2 ]
Lee, Ji Eun [1 ]
Kim, Tae-Wook [3 ]
Cho, Hyoung J. [4 ]
Lee, Sang Hyun [1 ]
机构
[1] Chonnam Natl Univ, Sch Chem Engn, 77 Yongbong Ro, Gwangju 61186, South Korea
[2] TheGoodSyst Corp, 125 Mongnae Ro, Ansan 15602, Gyeonggi Do, South Korea
[3] Jeonbuk Natl Univ, Dept Flexible & Printable Elect, 567 Baekje Daero, Jeonju 54896, South Korea
[4] Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA
基金
新加坡国家研究基金会;
关键词
Graphene; Metal; Composites; Interlayer; Isotropic thermal conductivity; MANAGEMENT; ELECTRONICS; CHALLENGES;
D O I
10.1016/j.jallcom.2025.179762
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, we successfully fabricated graphene/metal composites with high isotropic thermal conductivities. To address the thermal anisotropy resulting from the mismatch between the in-plane and through-plane thermal conductivities of multilayer graphene, we synthesized graphene foam (GF) with a three-dimensional structure. A homogeneous Cu layer was deposited by electroplating on the GF surface, filling the pores. Following the removal of pores in the composites through a spark plasma sintering process, the thermal conductivity of Cu-GF containing only 0.15 vol% of graphene was found to be significantly enhanced, with an increase of similar to 9 % compared to that of electroplated Cu. The incorporation of a thin Ti layer into the composites resulted in a higher Cu plating rate and achieved a ratio of 1.01 between the in-plane and through-plane thermal conductivities. These results are expected to be effectively applied in the advanced electronics industry, in which a high heat dissipation capacity is a crucial requirement.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] A model for the thermal conductivity of nanofluids - the effect of interfacial layer
    Leong, K. C.
    Yang, C.
    Murshed, S. M. S.
    JOURNAL OF NANOPARTICLE RESEARCH, 2006, 8 (02) : 245 - 254
  • [22] A model for the thermal conductivity of nanofluids – the effect of interfacial layer
    K.C. Leong
    C. Yang
    S.M.S. Murshed
    Journal of Nanoparticle Research, 2006, 8 : 245 - 254
  • [23] Classical estimates of the effective thermoelastic properties of copper-graphene composites
    Sadowski, Przemyslaw
    Kowalczyk-Gajewska, Katarzyna
    Stupkiewicz, Stanislaw
    COMPOSITES PART B-ENGINEERING, 2015, 80 : 278 - 290
  • [24] Application of machine learning to mechanical properties of copper-graphene composites
    Milan Rohatgi
    Amir Kordijazi
    MRS Communications, 2023, 13 : 111 - 116
  • [25] Preparation of copper-graphene layered composites by spark plasma sintering
    Chen, Xiaohong
    Liu, Pengzhong
    Liu, Ping
    Chen, Haohan
    MATERIALS SCIENCE AND TECHNOLOGY, 2018, 34 (14) : 1693 - 1699
  • [26] Unprecedented electrical performance of friction-extruded copper-graphene composites
    Gwalani, Bharat
    Li, Xiao
    Nittala, Aditya
    Choi, Woongjo
    Reza-E-Rabby, Md.
    Atehortua, Julian Escobar
    Bhattacharjee, Arun
    Pole, Mayur
    Silverstein, Joshua
    Song, Miao
    Kappagantula, Keerti
    MATERIALS & DESIGN, 2024, 237
  • [27] Interfacial coupling effects on the thermal conductivity of few-layer graphene
    Kan, Yajing
    Hong, Feng
    Wei, Zhiyong
    Bi, Kedong
    MATERIALS RESEARCH EXPRESS, 2020, 7 (09)
  • [28] Thermal Conductivity of Copper with the Addition of n- Layer Graphene
    A. A. Shul’zhenko
    A. N. Sokolov
    L. Jaworska
    V. G. Gargin
    E. F. Kuz’menko
    Journal of Superhard Materials, 2019, 41 : 283 - 285
  • [29] Thermal Conductivity of Copper with the Addition of n- Layer Graphene
    Shul'zhenko, A. A.
    Sokolov, A. N.
    Jaworska, L.
    Gargin, V. G.
    Kuz'menko, E. F.
    JOURNAL OF SUPERHARD MATERIALS, 2019, 41 (04) : 283 - 285
  • [30] Application of machine learning to mechanical properties of copper-graphene composites
    Rohatgi, Milan
    Kordijazi, Amir
    MRS COMMUNICATIONS, 2023, 13 (01) : 111 - 116