Pricing formulas for American perpetual knock-out and callable volatility options

被引:0
|
作者
Liu, Hsuan-Ku [1 ]
Sun, Li-Hsien [2 ]
机构
[1] Natl Taipei Univ Educ, Dept Math & Informat Educ, Taipei, Taiwan
[2] Natl Cent Univ, Grad Inst Stat, Taoyuan, Taiwan
关键词
American option; Callable option; Mean-reverting process; Ordinary differential equation; Volatility option; STOCHASTIC VOLATILITY;
D O I
10.1080/03610918.2025.2474602
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This study investigates challenges associated with the valuation of knockout and callable American put options on volatility, where volatility dynamics are described as a mean-reverting 3/2 volatility process. We propose pricing formulas for the perpetual American-style up-and-out volatility put option and perpetual American-style down-and-out volatility put option. Furthermore, we obtain the corresponding pricing formula for the perpetual American callable volatility put option under regularity conditions. We also conduct sensitivity analyses for various model parameters via simulations. Finally, we compare our model results to an empirical analysis.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Design, implementation and validation of advanced lattice techniques for pricing EAKO - European American Knock-Out option
    Fabbri, Mattia
    Giribone, Pier Giuseppe
    INTERNATIONAL JOURNAL OF FINANCIAL ENGINEERING, 2019, 6 (04):
  • [22] Uncertainty, hesitancy degree of investors and pricing perpetual American options
    Yang S.
    Ming L.
    Tang H.
    Yang S.
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2020, 40 (11): : 2839 - 2847
  • [23] On the perpetual American put options for level dependent volatility models with jumps
    Bayraktar, Erhan
    QUANTITATIVE FINANCE, 2011, 11 (03) : 335 - 341
  • [24] Perpetual American put options in a level-dependent volatility model
    Ekström, E
    JOURNAL OF APPLIED PROBABILITY, 2003, 40 (03) : 783 - 789
  • [25] Pricing Perpetual American Put Options with Asset-Dependent Discounting
    Al-Hadad, Jonas
    Palmowski, Zbigniew
    JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2021, 14 (03)
  • [26] Static hedging and pricing American knock-in put options
    Chung, San-Lin
    Shih, Pai-Ta
    Tsai, Wei-Che
    JOURNAL OF BANKING & FINANCE, 2013, 37 (01) : 191 - 205
  • [27] Pricing perpetual American options under multiscale stochastic elasticity of variance
    Yoon, Ji-Hun
    CHAOS SOLITONS & FRACTALS, 2015, 70 : 14 - 26
  • [28] Pricing perpetual American catastrophe put options: A penalty function approach
    Lin, X. Sheldon
    Wang, Tao
    INSURANCE MATHEMATICS & ECONOMICS, 2009, 44 (02): : 287 - 295
  • [29] A spectral-collocation method for pricing perpetual American puts with stochastic volatility
    Zhu, Song-Ping
    Chen, Wen-Ting
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (22) : 9033 - 9040
  • [30] Pricing perpetual American puts under multi-scale stochastic volatility
    Chen, Wen-Ting
    Zhu, Song-Ping
    ASYMPTOTIC ANALYSIS, 2012, 80 (1-2) : 133 - 148