On some properties of modulation spaces as Banach algebras

被引:0
|
作者
Feichtinger, Hans g. [1 ,2 ]
Kobayashi, Masaharu [3 ]
Sato, Enji [4 ]
机构
[1] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[2] Austrian Acad Sci, Acoust Res Inst, Vienna, Austria
[3] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
[4] Yamagata Univ Y, Fac Sci, Yamagata, Yamagata 9908560, Japan
关键词
modulation spaces; Wiener-Levy theorem; set of spectral synthe-; sis; Segal algebra; PSEUDODIFFERENTIAL CALCULUS; CONTINUITY PROPERTIES; IDEALS;
D O I
10.4064/sm240316-9-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give some properties of the modulation spaces Msp,1(Rn) as commutative Banach algebras. In particular, we prove the Wiener-Levy theorem for Msp,1(Rn), and clarify the sets of spectral synthesis for Msp,1(Rn) by using the "ideal theory for Segal algebras" developed by Reiter. The inclusion relationship between the modulation space 0 (R) and the Fourier Segal algebra FAp(R) is also determined.
引用
收藏
页码:55 / 86
页数:32
相关论文
共 50 条