On some properties of modulation spaces as Banach algebras

被引:0
|
作者
Feichtinger, Hans g. [1 ,2 ]
Kobayashi, Masaharu [3 ]
Sato, Enji [4 ]
机构
[1] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[2] Austrian Acad Sci, Acoust Res Inst, Vienna, Austria
[3] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
[4] Yamagata Univ Y, Fac Sci, Yamagata, Yamagata 9908560, Japan
关键词
modulation spaces; Wiener-Levy theorem; set of spectral synthe-; sis; Segal algebra; PSEUDODIFFERENTIAL CALCULUS; CONTINUITY PROPERTIES; IDEALS;
D O I
10.4064/sm240316-9-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give some properties of the modulation spaces Msp,1(Rn) as commutative Banach algebras. In particular, we prove the Wiener-Levy theorem for Msp,1(Rn), and clarify the sets of spectral synthesis for Msp,1(Rn) by using the "ideal theory for Segal algebras" developed by Reiter. The inclusion relationship between the modulation space 0 (R) and the Fourier Segal algebra FAp(R) is also determined.
引用
收藏
页码:55 / 86
页数:32
相关论文
共 50 条
  • [1] Embeddings of some classical Banach spaces into modulation spaces
    Okoudjou, KA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (06) : 1639 - 1647
  • [2] Some properties of Banach spaces
    Bourgin, DG
    AMERICAN JOURNAL OF MATHEMATICS, 1942, 64 : 597 - 612
  • [3] Some Cohomological Properties of Banach Algebras
    Kojanaghi, M. Shams
    Azar, K. Haghnejad
    Mardanbeigi, M. R.
    JOURNAL OF MATHEMATICAL EXTENSION, 2022, 16 (07)
  • [4] Some approximation properties of Banach spaces and Banach lattices
    Figiel, Tadeusz
    Johnson, William B.
    Pelczynski, Aleksander
    ISRAEL JOURNAL OF MATHEMATICS, 2011, 183 (01) : 199 - 231
  • [5] Some approximation properties of Banach spaces and Banach lattices
    Tadeusz Figiel
    William B. Johnson
    Aleksander Pełczyński
    Israel Journal of Mathematics, 2011, 183
  • [6] Examples of banach spaces that are not banach algebras
    Mullen, Ryan
    Function Spaces, 2007, 435 : 335 - 342
  • [7] SOME BANACH ALGEBRA PROPERTIES IN THE CARTESIAN PRODUCT OF BANACH ALGEBRAS
    Dedania, H. V.
    Kanani, H. J.
    ANNALS OF FUNCTIONAL ANALYSIS, 2014, 5 (01): : 51 - 55
  • [8] On Geometrical Properties of Some Banach Spaces
    Simsek, Necip
    Savas, Ekrem
    Karakaya, Vatan
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (01): : 295 - 300
  • [9] BSE Properties of Some Banach Function Algebras
    Z. S. Hosseini
    E. Feizi
    A. H. Sanatpour
    Analysis Mathematica, 2021, 47 : 105 - 121
  • [10] BSE Properties of Some Banach Function Algebras
    Hosseini, Z. S.
    Feizi, E.
    Sanatpour, A. H.
    ANALYSIS MATHEMATICA, 2021, 47 (01) : 105 - 121