ChemXTree: A Feature-Enhanced Graph Neural Network-Neural Decision Tree Framework for ADMET Prediction

被引:0
|
作者
Xu, Yuzhi [1 ,2 ,3 ]
Liu, Xinxin [4 ,5 ]
Xia, Wei [1 ,2 ,3 ]
Ge, Jiankai [6 ]
Ju, Cheng-Wei [7 ]
Zhang, Haiping [8 ,9 ]
Zhang, John Z. H. [1 ,2 ,3 ,8 ,9 ,10 ]
机构
[1] NYU Shanghai, Shanghai Frontiers Sci Ctr Artificial Intelligence, Shanghai 200062, Peoples R China
[2] NYU Shanghai, NYU ECNU Ctr Computat Chem, Shanghai 200062, Peoples R China
[3] NYU, Dept Chem, New York, NY 10003 USA
[4] Univ Penn, Dept Comp & Informat Sci, Philadelphia, PA 19104 USA
[5] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[6] Univ Illinois, Chem & Biomol Engn, Urbana, IL 61801 USA
[7] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60615 USA
[8] Shenzhen Inst Adv Technol, Fac Synthet Biol, Shenzhen 518055, Peoples R China
[9] Shenzhen Inst Adv Technol, Inst Synthet Biol, Shenzhen 518055, Peoples R China
[10] East China Normal Univ, Shanghai Engn Res Ctr Mol Therapeut & New Drug Dev, Sch Chem & Mol Engn, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
CLASSIFICATION;
D O I
10.1021/acs.jcim.4c01186
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The rapid progression of machine learning, especially deep learning (DL), has catalyzed a new era in drug discovery, introducing innovative approaches for predicting molecular properties. Despite the many methods available for feature representation, efficiently utilizing rich, high-dimensional information remains a significant challenge. Our work introduces ChemXTree, a novel graph-based model that integrates a Gate Modulation Feature Unit (GMFU) and neural decision tree (NDT) in the output layer to address this challenge. Extensive evaluations on benchmark data sets, including MoleculeNet and eight additional drug databases, have demonstrated ChemXTree's superior performance, surpassing or matching the current state-of-the-art models. Visualization techniques clearly demonstrate that ChemXTree significantly improves the separation between substrates and nonsubstrates in the latent space. In summary, ChemXTree demonstrates a promising approach for integrating advanced feature extraction with neural decision trees, offering significant improvements in predictive accuracy for drug discovery tasks and opening new avenues for optimizing molecular properties.
引用
收藏
页码:8440 / 8452
页数:13
相关论文
共 50 条
  • [41] SEAL+: A subgraph-enhanced framework for link prediction with graph neural networks
    Karami, Reyhane
    Vahidipour, S. Mehdi
    Rezvanian, Alireza
    JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION, 2025, 44
  • [42] Low-altitude small-sized object detection using lightweight feature-enhanced convolutional neural network
    Ye Tao
    Zhao Zongyang
    Zhang Jun
    Chai Xinghua
    Zhou Fuqiang
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2021, 32 (04) : 841 - 853
  • [43] An Interpretable Station Delay Prediction Model Based on Graph Community Neural Network and Time-Series Fuzzy Decision Tree
    Zhang, Dalin
    Xu, Yi
    Peng, Yunjuan
    Du, Chenyue
    Wang, Nan
    Tang, Mincong
    Lu, Lingyun
    Liu, Jiqiang
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (02) : 421 - 433
  • [44] FFEINR: flow feature-enhanced implicit neural representation for spatiotemporal super-resolution
    Chenyue Jiao
    Chongke Bi
    Lu Yang
    Journal of Visualization, 2024, 27 : 273 - 289
  • [45] Low-altitude small-sized object detection using lightweight feature-enhanced convolutional neural network
    YE Tao
    ZHAO Zongyang
    ZHANG Jun
    CHAI Xinghua
    ZHOU Fuqiang
    Journal of Systems Engineering and Electronics, 2021, 32 (04) : 841 - 853
  • [46] FFEINR: flow feature-enhanced implicit neural representation for spatiotemporal super-resolution
    Jiao, Chenyue
    Bi, Chongke
    Yang, Lu
    JOURNAL OF VISUALIZATION, 2024, 27 (02) : 273 - 289
  • [47] A Spatial Feature-Enhanced Attention Neural Network with High-Order Pooling Representation for Application in Pest and Disease Recognition
    Kong, Jianlei
    Wang, Hongxing
    Yang, Chengcai
    Jin, Xuebo
    Zuo, Min
    Zhang, Xin
    AGRICULTURE-BASEL, 2022, 12 (04):
  • [48] JITGNN: A deep graph neural network framework for Just-In-Time bug prediction
    Keshavarz, Hossein
    Rodriguez-Perez, Gema
    JOURNAL OF SYSTEMS AND SOFTWARE, 2024, 210
  • [49] A Framework for Metal Surface Energy Prediction Based on Crystal Graph Convolutional Neural Network
    Zhou L.
    Zhu G.
    Wu Y.
    Huang Y.
    Hong Z.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2023, 51 (02): : 389 - 396
  • [50] forgeNet: a graph deep neural network model using tree-based ensemble classifiers for feature graph construction
    Kong, Yunchuan
    Yu, Tianwei
    BIOINFORMATICS, 2020, 36 (11) : 3507 - 3515