Industrial grade calcium sulfide modified by selenium for elemental mercury removal from flue gas

被引:0
|
作者
Wang, Yiran [1 ,2 ]
Zhang, Zewei [1 ,2 ]
He, Chuan [3 ]
He, Gaohong [1 ,2 ]
Zhang, Ning [1 ,2 ]
Zhang, Xiaopeng [1 ,2 ]
Bao, Junjiang [1 ,2 ]
机构
[1] Dalian Univ Technol, State Key Lab Fine Chem, Dalian 116023, Peoples R China
[2] Dalian Univ Technol, Sch Chem Engn Ocean & Life Sci, Panjin 124221, Peoples R China
[3] Suzhou TPRI Ener & Enviro Tech Co Ltd, Suzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Elemental mercury; Se modification; Adsorption; CaS; SO2; RESISTANCE; HG-0; COAL; NO; AIR; NANOPARTICLES; ADSORPTION; EMISSIONS; OXIDATION; SORBENTS;
D O I
10.1016/j.seppur.2024.128632
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Metallic sulfides (MS) adsorption is considered as an effective method to remove Hg-0 from coal-fire flue gas. Se modification can significantly improve Hg-0 removal process on MS due to the high affinity constant between Se and Hg-0. CaS as a production from wet flue gas desulfurization has potential Hg-0 removal ability. Therefore, in the present work, Se modified industrial grade CaS was prepared to remove Hg-0 and the effect of the ratio of CaS to Se on Hg0 removal process was studied. Characterization results show that Ca-1-Se-1.7 had the richest porous structure and largest surface area resulting in more available surface active sites. In addition, Ca-1-Se-1.7 has the highest content of Se-, who can remove Hg-0 via Hg-0(ad) + Se-2(2-) -> HgSe + Se2- As a result, Ca-1-Se-1.7 has the highest Hg-0 removal efficiency of nearly 100 % from 60 degrees C to 100 degrees C, and it reaches 85 % even in the presence of 500 ppm SO2. The Hg-0 adsorption kinetic was well defined by the pseudo-first-order kinetic model and internal diffusion model, so that Hg-0 diffusion especially internal diffusion is the primary controlling step.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Photochemical removal of mercury from flue gas
    Granite, EJ
    Pennline, HW
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (22) : 5470 - 5476
  • [42] Insights into the enhanced mechanism of selenium-doped iron nitride carbon catalysts for elemental mercury removal in flue gas
    Shen, Linzhi
    Tong, Hui
    Zhang, Zhen
    Liu, Biao
    Sun, Menglong
    Wu, Hao
    Zhou, Changsong
    Zhu, Lingli
    Xie, Shengyu
    Zhou, Yaming
    Tang, Guanghua
    Liu, Jing
    Yang, Hongmin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 674 : 194 - 208
  • [43] Removal of elemental mercury from coal combustion flue gas using bentonite modified with Ce-Fe binary oxides
    Zhou, Mengli
    Xu, Yang
    Luo, Guangqian
    Zhang, Qingzhu
    Du, Lin
    Li, Zehua
    APPLIED SURFACE SCIENCE, 2022, 590
  • [44] Removal of elemental mercury from simulated flue gas by ZSM-5 modified with Mn-Fe mixed oxides
    Zhang, Zhen
    Wu, Jiang
    Li, Bin
    Xu, Huibin
    Liu, Dongjing
    CHEMICAL ENGINEERING JOURNAL, 2019, 375
  • [45] The performance of iodine on the removal of elemental mercury from the simulated coal-fired flue gas
    Chi, Yao
    Yan, Naiqiang
    Qu, Zan
    Qiao, Shaohua
    Jia, Jinping
    JOURNAL OF HAZARDOUS MATERIALS, 2009, 166 (2-3) : 776 - 781
  • [46] Cost-Effective Manganese Ore Sorbent for Elemental Mercury Removal from Flue Gas
    Yang, Yingju
    Miao, Sen
    Liu, Jing
    Wang, Zhen
    Yu, Yingni
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2019, 53 (16) : 9957 - 9965
  • [47] Removal of elemental mercury from simulated flue gas by a novel composite sulfurized activated carbon
    Qiu, Lei
    Zhai, Yunbo
    Chen, Hongmei
    Liu, Xiaoting
    Zhu, Lu
    Li, Caiting
    Zeng, Guangming
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2018, 40 (04) : 381 - 387
  • [48] Combined effects of Ag and UiO-66 for removal of elemental mercury from flue gas
    Zhao, Songjian
    Chen, Dongyao
    Xu, Haomiao
    Mei, Jian
    Qu, Zan
    Liu, Ping
    Cui, Yong
    Yan, Naiqiang
    CHEMOSPHERE, 2018, 197 : 65 - 72
  • [49] Advances in single-atom catalysts/sorbents for elemental mercury removal from flue gas
    Zheng, Wei
    Sun, Qi
    Yang, Wanliang
    Yang, Zequn
    Leng, Lijian
    Liu, Yuxing
    Chen, Jiefeng
    Zu, Hongxiao
    Tang, Qinyuan
    Li, Hailong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
  • [50] Removal of elemental mercury from flue gas by Fe/Al-SiO2 complex
    Li, Yang
    Chen, Wei
    Zhao, Yong-Chun
    Li, Hai-Long
    Zhang, Jun-Ying
    Li, Jie
    Hu, Hao-Quan
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2019, 47 (12): : 1406 - 1416