WSDMS: Debunk Fake News viaWeakly Supervised Detection of Misinforming Sentences with Contextualized Social Wisdom

被引:0
|
作者
Yang, Ruichao [1 ]
Gao, Wei [2 ]
Ma, Jing [1 ]
Lin, Hongzhan [1 ]
Yang, Zhiwei [3 ]
机构
[1] Hong Kong Baptist Univ, Hong Kong, Peoples R China
[2] Singapore Management Univ, Singapore, Singapore
[3] Jinan Univ, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, we witness the explosion of false and unconfirmed information (i.e., rumors) that went viral on social media and shocked the public. Rumors can trigger versatile, mostly controversial stance expressions among social media users. Rumor verification and stance detection are different yet relevant tasks. Fake news debunking primarily focuses on determining the truthfulness of news articles, which oversimplifies the issue as fake news often combines elements of both truth and falsehood. Thus, it becomes crucial to identify specific instances of misinformation within the articles. In this research, we investigate a novel task in the field of fake news debunking, which involves detecting sentence-level mis-information. One of the major challenges in this task is the absence of a training dataset with sentence-level annotations regarding veracity. Inspired by the Multiple Instance Learning (MIL) approach, we propose a model called Weakly Supervised Detection of Misinforming Sentences (WSDMS). This model only requires bag-level labels for training but is capable of inferring both sentence-level misinformation and article-level veracity, aided by relevant social media conversations that are attentively contextualized with news sentences. We evaluate WSDMS on three real-world benchmarks and demonstrate that it outperforms existing state-of-the-art baselines in debunking fake news at both the sentence and article levels.
引用
收藏
页码:1525 / 1538
页数:14
相关论文
共 50 条
  • [21] Evaluating the Role of News Content and Social Media Interactions for Fake News Detection
    Sotirakou, Catherine
    Karampela, Anastasia
    Mourlas, Constantinos
    DISINFORMATION IN OPEN ONLINE MEDIA, MISDOOM 2021, 2021, 12887 : 128 - 141
  • [22] Semi-Supervised Learning and Graph Neural Networks for Fake News Detection
    Benamira, Adrien
    Devillers, Benjamin
    Lesot, Etienne
    Ray, Ayush K.
    Saadi, Manal
    Malliaros, Fragkiskos D.
    PROCEEDINGS OF THE 2019 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2019), 2019, : 568 - 569
  • [23] A comprehensive review on automatic detection of fake news on social media
    Manish Kumar Singh
    Jawed Ahmed
    Mohammad Afshar Alam
    Kamlesh Kumar Raghuvanshi
    Sachin Kumar
    Multimedia Tools and Applications, 2024, 83 : 47319 - 47352
  • [24] Social Media and Fake News Detection using Adversarial Collaboration
    DSouza, Karen M.
    French, Aaron M.
    PROCEEDINGS OF THE 55TH ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, 2022, : 115 - 123
  • [25] Detection and Analysis of Fake News Users' Communities in Social Media
    Amira, Abdelouahab
    Derhab, Abdelouahid
    Hadjar, Samir
    Merazka, Mustapha
    Alam, Md. Golam Rabiul
    Hassan, Mohammad Mehedi
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (04): : 5050 - 5059
  • [26] Understanding User Profiles on Social Media for Fake News Detection
    Shu, Kai
    Wang, Suhang
    Liu, Huan
    IEEE 1ST CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL (MIPR 2018), 2018, : 430 - 435
  • [27] A comprehensive review on automatic detection of fake news on social media
    Singh, Manish Kumar
    Ahmed, Jawed
    Alam, Mohammad Afshar
    Raghuvanshi, Kamlesh Kumar
    Kumar, Sachin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (16) : 47319 - 47352
  • [28] Fake News Detection in Social Networks via Crowd Signals
    Tschiatschek, Sebastian
    Singla, Adish
    Rodriguez, Manuel Gomez
    Merchant, Arpit
    Krause, Andreas
    COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), 2018, : 517 - 524
  • [29] A Machine Learning Technique for Detection of Social Media Fake News
    Arowolo, Micheal Olaolu
    Misra, Sanjay
    Ogundokun, Roseline Oluwaseun
    INTERNATIONAL JOURNAL ON SEMANTIC WEB AND INFORMATION SYSTEMS, 2023, 19 (01)
  • [30] Lightweight Chain for Detection of Rumors and Fake News in Social Media
    Alsaawy, Yazed
    Alkhodre, Ahmad
    Bahbouh, Nour M.
    Sen, Adnan Abi
    Nadeem, Adnan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (08) : 515 - 525