STGLR: A Spacecraft Anomaly Detection Method Based on Spatio-Temporal Graph Learning

被引:0
|
作者
Lai, Yi [1 ,2 ,3 ]
Zhu, Ye [1 ,2 ,3 ]
Li, Li [1 ,2 ,3 ]
Lan, Qing [1 ,2 ,3 ]
Zuo, Yizheng [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Innovat Acad Microsatellites, Shanghai 201304, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 101408, Peoples R China
[3] Chinese Acad Sci, Key Lab Satellite Digitalizat Technol, Shanghai 200031, Peoples R China
关键词
anomaly detection; spacecraft telemetry data; dynamic graph learning; GraphSAGE; variational auto-encoder; TIME-SERIES; MODEL;
D O I
10.3390/s25020310
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Anomalies frequently occur during the operation of spacecraft in orbit, and studying anomaly detection methods is crucial to ensure the normal operation of spacecraft. Due to the complexity of spacecraft structures, telemetry data possess characteristics such as high dimensionality, complexity, and large scale. Existing methods frequently ignore or fail to explicitly extract the correlation between variables, and due to the lack of prior knowledge, it is difficult to obtain the initial relationship of variables. To address these issues, this paper proposes a new method, namely spatio-temporal graph learning reconstruction (STGLR), for spacecraft anomaly detection. STGLR employs a dynamic graph learning module to infer the initial relationships among telemetry variables. It then constructs a spatio-temporal feature extraction module to capture complex spatio-temporal dependencies among variables, leveraging a graph sample and aggregation network to learn embedded features and incorporating an attention mechanism to adaptively select salient features. Finally, a reconstruction module is used to learn the latent representations of features, capturing the normal patterns in telemetry data and achieving anomaly detection. To validate the effectiveness of the proposed method, experiments were conducted on two public spacecraft datasets, and the results demonstrate that the performance of the STGLR method surpasses existing anomaly detection methods, with an average F1 score exceeding 0.97.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Bidirectional Spatio-Temporal Feature Learning With Multiscale Evaluation for Video Anomaly Detection
    Zhong, Yuanhong
    Chen, Xia
    Hu, Yongting
    Tang, Panliang
    Ren, Fan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8285 - 8296
  • [22] An unsupervised video anomaly detection method via Optical Flow decomposition and Spatio-Temporal feature learning
    Fan, Jin
    Ji, Yuxiang
    Wu, Huifeng
    Ge, Yan
    Sun, Danfeng
    Wu, Jia
    PATTERN RECOGNITION LETTERS, 2024, 185 : 239 - 246
  • [23] Scale-Aware Spatio-Temporal Relation Learning for Video Anomaly Detection
    Li, Guoqiu
    Cai, Guanxiong
    Zeng, Xingyu
    Zhao, Rui
    COMPUTER VISION - ECCV 2022, PT IV, 2022, 13664 : 333 - 350
  • [24] Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Datasets Using Deep Learning
    Karadayi, Yildiz
    ADVANCED ANALYTICS AND LEARNING ON TEMPORAL DATA, AALTD 2019, 2020, 11986 : 167 - 182
  • [25] Anomaly Detection in Maritime Domain based on Spatio-Temporal Analysis of AIS Data Using Graph Neural Networks
    Eljabu, Lubna
    Etemad, Mohammad
    Matwin, Stan
    2021 5TH INTERNATIONAL CONFERENCE ON VISION, IMAGE AND SIGNAL PROCESSING (ICVISP 2021), 2021, : 142 - 147
  • [26] Convex Polytope Ensembles for Spatio-Temporal Anomaly Detection
    Turchini, Francesco
    Seidenari, Lorenzo
    Del Bimbo, Alberto
    IMAGE ANALYSIS AND PROCESSING,(ICIAP 2017), PT I, 2017, 10484 : 174 - 184
  • [27] Transformer with Spatio-Temporal Representation for Video Anomaly Detection
    Sun, Xiaohu
    Chen, Jinyi
    Shen, Xulin
    Li, Hongjun
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2022, 2022, 13813 : 213 - 222
  • [28] Spatio-Temporal United Memory for Video Anomaly Detection
    Wang, Yunlong
    Chen, Mingyi
    Li, Jiaxin
    Li, Hongjun
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2022, 2022, 13813 : 84 - 93
  • [29] Anomaly Detection with a Spatio-Temporal Tracking of the Laser Spot
    Atienza, David
    Bielza, Concha
    Diaz, Javier
    Larranaga, Pedro
    PROCEEDINGS OF THE EIGHTH EUROPEAN STARTING AI RESEARCHER SYMPOSIUM (STAIRS 2016), 2016, 284 : 137 - 142
  • [30] Spatio-Temporal Unity Networking for Video Anomaly Detection
    Li, Yuanyuan
    Cai, Yiheng
    Liu, Jiaqi
    Lang, Shinan
    Zhang, Xinfeng
    IEEE ACCESS, 2019, 7 : 172425 - 172432