On phase-isometries between the positive cones of c0

被引:0
|
作者
Sun, Longfa [1 ]
Sun, Yinghua [1 ]
Dai, Duanxu [2 ]
机构
[1] North China Elect Power Univ, Sch Math & Phys, Hebei Key Lab Phys & Energy Technol, Baoding 071003, Peoples R China
[2] Jimei Univ, Sch Sci, Xiamen 361021, Peoples R China
来源
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS | 2025年 / 56卷 / 01期
基金
中国国家自然科学基金;
关键词
Phase-isometries; Linear isometries; Banach space; Wigner's theorem; EPSILON-ISOMETRIES; WIGNERS THEOREM; BANACH-SPACES; STABILITY; EMBEDDINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let c(0)(+) be the positive cone of c(0), i.e., c(0)(+) = {x = (x(n))(infinity)(n=1) is an element of c(0) : x(n) >= 0, for all n is an element of N}. A map f : c(0)(+) -> c(0)(+) is called a phase-isometry provided {parallel to f(x) + f(y)parallel to, parallel to f(x) - f(y)parallel to} = {parallel to x + y parallel to, parallel to x - y parallel to} for all x, y is an element of c(0)(+). In this paper, we prove that every phase-isometry f : c(0)(+) -> c(0)(+) is actually an isometry. And there exists a bounded linear operator T : (span) over bar f (c(0)(+)) -> c(0) with parallel to T parallel to = 1 such that Tf = Id(c+0). Furthermore, if f is almost surjective, then f is an additive isometry as the restriction of a surjective linear isometry from c(0) onto itself.
引用
收藏
页码:210 / 217
页数:8
相关论文
共 50 条
  • [41] Groups of positive composition operators on C0(X,Cn)
    Gurcay, H
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1997, 28 (09): : 1295 - 1302
  • [42] AN AMIR-CAMBERN THEOREM FOR QUASI-ISOMETRIES OF C0(K, X) SPACES
    Galego, Eloi Medina
    Porto da Silva, Andre Luis
    PACIFIC JOURNAL OF MATHEMATICS, 2018, 297 (01) : 87 - 100
  • [43] On the Symmetrizations of ε-Isometries on Positive Cones of Continuous Function Spaces
    Sun, Longfa
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2021, 55 (01) : 75 - 79
  • [44] Measurements of the branching fractions of Ξc0 → ΛKS0, Ξc0 → Σ0KS0, and Ξc0 → Σ+K- decays at Belle
    Li, Y.
    Cui, J. X.
    Jia, S.
    Shen, C. P.
    Adachi, I.
    Ahn, J. K.
    Aihara, H.
    Al Said, S.
    Asner, D. M.
    Atmacan, H.
    Aushev, T.
    Ayad, R.
    Babu, V.
    Bahinipati, S.
    Behera, P.
    Belous, K.
    Bennett, J.
    Bessner, M.
    Bhardwaj, V.
    Bhuyan, B.
    Bilka, T.
    Bobrov, A.
    Bodrov, D.
    Bonvicini, G.
    Borah, J.
    Bozek, A.
    Bracko, M.
    Branchini, P.
    Browder, T. E.
    Budano, A.
    Campajola, M.
    Cervenkov, D.
    Chang, M. -C.
    Chang, P.
    Chen, A.
    Cheon, B. G.
    Chilikin, K.
    Cho, H. E.
    Cho, K.
    Cho, S. -J.
    Choi, S. -K.
    Choi, Y.
    Choudhury, S.
    Cinabro, D.
    Cunliffe, S.
    Das, S.
    De Nardo, G.
    De Pietro, G.
    Dhamija, R.
    Di Capua, F.
    PHYSICAL REVIEW D, 2022, 105 (01)
  • [45] Hyers-Ulam stability of ε-isometries between the positive cones of Lp-spaces
    Sun, Longfa
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 487 (02)
  • [46] Linear Maps Between the Sequence Spaces c and c0
    Subiman Kundu
    Manisha Aggarwal
    Resonance, 2023, 28 : 653 - 658
  • [47] On non-linear ε-isometries between the positive cones of certain continuous function spaces
    Sun, Longfa
    ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (04)
  • [48] Linear Maps Between the Sequence Spaces c and c0
    Kundu, Subiman
    Aggarwal, Manisha
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2023, 28 (04): : 653 - 658
  • [49] Search for X(3872) → π0χc0 and X(3872) → ππχc0 at BESIII
    Ablikim, M.
    Achasov, M. N.
    Adlarson, P.
    Albrecht, M.
    Aliberti, R.
    Amoroso, A.
    An, M. R.
    An, Q.
    Bai, X. H.
    Bai, Y.
    Bakina, O.
    Ferroli, R. Baldini
    Balossino, I
    Ban, Y.
    Batozskaya, V
    Becker, D.
    Begzsuren, K.
    Berger, N.
    Bertani, M.
    Bettoni, D.
    Bianchi, F.
    Bloms, J.
    Bortone, A.
    Boyko, I
    Briere, R. A.
    Brueggemann, A.
    Cai, H.
    Cai, X.
    Calcaterra, A.
    Cao, G. F.
    Cao, N.
    Cetin, S. A.
    Chang, J. F.
    Chang, W. L.
    Chelkov, G.
    Chen, C.
    Chen, Chao
    Chen, G.
    Chen, H. S.
    Chen, M. L.
    Chen, S. J.
    Chen, S. M.
    Chen, T.
    Chen, X. R.
    Chen, X. T.
    Chen, Y. B.
    Chen, Z. J.
    Cheng, W. S.
    Chu, X.
    Cibinetto, G.
    PHYSICAL REVIEW D, 2022, 105 (07)
  • [50] Embeddability of L1(μ) in dual spaces, geometry of cones and a characterization of c0
    Polyrakis, IA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 289 (01) : 126 - 142