Disentangled feature graph for Hierarchical Text Classification

被引:0
|
作者
Liu, Renyuan [1 ]
Zhang, Xuejie [1 ]
Wang, Jin [1 ]
Zhou, Xiaobing [1 ]
机构
[1] Yunnan Univ, Sch Informat Sci & Engn, Kunming 650500, Yunnan, Peoples R China
关键词
Feature disentanglement; Hierarchical Text Classification; Task conflicts and dependencies;
D O I
10.1016/j.ipm.2025.104065
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Effectively utilizing the hierarchical relationship among labels is the core of Hierarchical Text Classification (HTC). Previous research on HTC has tended to enhance the dependencies between labels. However, they overlook some labels that may conflict with other labels because alleviating label conflicts also weakens label dependencies and reduces the model performance. Therefore, this paper focuses on the issue of label conflicts and studies methods to alleviate label conflicts without affecting the mutual support relationship between labels. To solve the abovementioned problem, we first use the feature disentanglement method to cut off all label connections. Then, the connection among labels is selectively established by constructing a hierarchical graph on disentangled features. Finally, the Graph Neural Networks (GNN) is adopted to encode the obtained Disentanglement Feature Graph (DFG) and enables only labels with connections to support each other, while labels without connections do not interfere with each other. The experimental results on the WOS, RCV1-v2, and BGC datasets show the effectiveness of DFG. In detail, the experimental results show that on the WOS dataset, the model incorporating DFG achieved a 1.07% improvement in Macro-F1, surpassing the best model by 0.27%. On the RCV1-v2 dataset, the model incorporating DFG achieved a 0.95% improvement in Micro-F1, surpassing the best model by 0.21%. On the BGC dataset, the model incorporating DFG achieved a 1.81% improvement in Micro-F1, surpassing the best model by 0.45%.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Experiments with hierarchical text classification
    Granitzer, M
    Auer, P
    PROCEEDINGS OF THE NINTH IASTED INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, 2005, : 177 - 182
  • [22] Hierarchical text classification and evaluation
    Sun, AX
    Lim, EP
    2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, : 521 - 528
  • [23] A Causal Disentangled Multi-granularity Graph Classification Method
    Li, Yuan
    Liu, Li
    Chen, Penggang
    Zhang, Youmin
    Wang, Guoyin
    ROUGH SETS, IJCRS 2023, 2023, 14481 : 354 - 368
  • [24] Disentangled Feature Representation for Few-Shot Image Classification
    Cheng, Hao
    Wang, Yufei
    Li, Haoliang
    Kot, Alex C.
    Wen, Bihan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 10422 - 10435
  • [25] A method of the feature selection in hierarchical text classification based on the category discrimination and position information
    Song, Jia
    Zhang, Pengzhou
    Qin, Sijun
    Gong, Junpeng
    2015 INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS - COMPUTING TECHNOLOGY, INTELLIGENT TECHNOLOGY, INDUSTRIAL INFORMATION INTEGRATION (ICIICII), 2015, : 132 - +
  • [26] Feature Selection in Text Classification
    Sahin, Durmus Ozkan
    Ates, Nurullah
    Kilic, Erdal
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 1777 - 1780
  • [27] Feature engineering for text classification
    Scott, S
    Matwin, S
    MACHINE LEARNING, PROCEEDINGS, 1999, : 379 - 388
  • [28] Feature Selection Algorithm for Hierarchical Text Classification Using Kullback-Leibler Divergence
    Yao Lifang
    Qin Sijun
    Zhu Huan
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA 2017), 2017, : 421 - 424
  • [29] FDGNN: Feature-Aware Disentangled Graph Neural Network for Recommendation
    Liu, Xiao
    Meng, Shunmei
    Li, Qianmu
    Liu, Qiyan
    He, Qiang
    Ramesh, Dharavath
    Qi, Lianyong
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (01) : 1372 - 1383
  • [30] Text Level Graph Neural Network for Text Classification
    Huang, Lianzhe
    Ma, Dehong
    Li, Sujian
    Zhang, Xiaodong
    Wang, Houfeng
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 3444 - 3450