An Enhanced Generative Adversarial Network Model for Fingerprint Presentation Attack Detection

被引:0
|
作者
Anshul, Ashutosh [1 ]
Jha, Ashwini [1 ]
Jain, Prayag [1 ]
Rai, Anuj [1 ]
Sharma, Ram Prakash [2 ]
Dey, Somnath [1 ]
机构
[1] Indian Inst Technol Indore, Indore, Madhya Pradesh, India
[2] Natl Inst Technol Hamirpur, Hamirpur, Himachal Prades, India
关键词
Biometrics; Fingerprint; Presentation Attack; Generative Adversarial Networks;
D O I
10.1007/978-3-031-12700-7_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fingerprint recognition systems have played a significant role in the field of biometric security in recent years. However, it is vulnerable to several threats which can put the biometric security system at a significant risk. Presentation attack or spoofing is one of these attacks which utilizes a fake fingerprint created with a fabrication material by an intruder to fool the authentication system. Development of new fabrication materials makes this spoof detection more challenging for cross materials. In this work, we have proposed a novel approach for detecting these presentation attacks using Auxiliary Classifier-Generative Adversarial Networks (AC-GAN). The performance of the proposed method is assessed in an open set paradigm on publicly available LivDet Competition 2013 and 2015 datasets. Proposed methodology achieves an average accuracy of 98.52% and 92.02% on the LivDet 2013 and LivDet 2015 datasets, respectively which outperforms the state-of-the-art methods.
引用
收藏
页码:376 / 386
页数:11
相关论文
共 50 条
  • [41] Attention-Enhanced Voice Portrait Model Using Generative Adversarial Network
    Mao, Jingyi
    Zhou, Yuchen
    Wang, Yifan
    Li, Junyu
    Liu, Ziqing
    Bu, Fanliang
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (01): : 837 - 855
  • [42] Generative adversarial network for road damage detection
    Maeda, Hiroya
    Kashiyama, Takehiro
    Sekimoto, Yoshihide
    Seto, Toshikazu
    Omata, Hiroshi
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2021, 36 (01) : 47 - 60
  • [43] A Recombination Generative Adversarial Network for Intrusion Detection
    Luo, Haoqi
    Wan, Liang
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2024, 34 (02) : 323 - 334
  • [44] Enhanced network optimized generative adversarial network for image enhancement
    Lingyu Yan
    Jiarun Fu
    Chunzhi Wang
    Zhiwei Ye
    Hongwei Chen
    Hefei Ling
    Multimedia Tools and Applications, 2021, 80 : 14363 - 14381
  • [45] Botnet detection based on generative adversarial network
    Zou, Futai
    Tan, Yue
    Wang, Lin
    Jiang, Yongkang
    Tongxin Xuebao/Journal on Communications, 2021, 42 (07): : 95 - 106
  • [46] Saliency Detection by Conditional Generative Adversarial Network
    Cai, Xiaoxu
    Yu, Hui
    NINTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2017), 2018, 10615
  • [47] Generative Adversarial Attributed Network Anomaly Detection
    Chen, Zhenxing
    Liu, Bo
    Wang, Meiqing
    Dai, Peng
    Lv, Jun
    Bo, Liefeng
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 1989 - 1992
  • [48] Enhanced network optimized generative adversarial network for image enhancement
    Yan, Lingyu
    Fu, Jiarun
    Wang, Chunzhi
    Ye, Zhiwei
    Chen, Hongwei
    Ling, Hefei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (09) : 14363 - 14381
  • [49] Generative Adversarial Network-based Approach for Automated Generation of Adversarial Attacks Against a Deep-Learning based XSS Attack Detection Model
    Alaoui, Rokia Lamrani
    Nfaoui, El Habib
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (07) : 892 - 897
  • [50] Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
    Du, Chuan
    Zhang, Lei
    REMOTE SENSING, 2021, 13 (21)