A Ni single-atom catalyst for advanced environmental disinfection based on electrochemical production of hydrogen peroxide

被引:0
|
作者
Liu, Zhijian [1 ]
Zhang, Bingqian [1 ]
Liu, Yan [1 ]
Wang, Chongbo [1 ]
Ye, Chenliang [1 ]
Yang, Weijie [1 ]
机构
[1] North China Elect Power Univ, Sch Energy & Power Engn, Baoding 071003, Hebei, Peoples R China
关键词
OXYGEN REDUCTION; ELECTRO-FENTON; WATER; ELECTROSYNTHESIS;
D O I
10.1039/d4ta08971e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the increasing attention to environmental hygiene and air quality, the disinfection of bioaerosols has become a highly focused research area. Therefore, identifying a safe and efficient disinfection method to maintain indoor air quality is of critical importance. Hydrogen peroxide (H2O2) has garnered attention for environmental disinfection due to its broad-spectrum bactericidal properties and low toxicity. Herein, we employed the electrocatalytic 2e- oxygen reduction reaction (ORR) to produce H2O2 and directly applied it for bioaerosol disinfection. In detail, our density functional theory (DFT) calculations demonstrated that a Ni single-atom catalyst with N and O coordination resulted in a partial transfer of electrons from the Ni atoms to the coordinated oxygen atom, which optimized the *OOH binding energy and enhanced 2e- oxygen reduction activity to produce H2O2. Guided by the DFT calculations, we designed a Ni single-atom catalyst with a Ni-N4-O structure for 2e- ORR to produce H2O2. This catalyst achieved high H2O2 selectivities of 95% and 85% under alkaline and neutral conditions, respectively, and displayed a H2O2 production rate as high as 316.8 mmol per g metal per h in an H-type electrolytic cell. Finally, in our environmental disinfection system, the produced H2O2 was atomized into a small space for disinfection, achieving a high disinfection rate of 87% at 4 minutes and nearly 100% at 6 minutes. This study highlights the great potential of single-atom catalysts in the field of environmental disinfection.
引用
收藏
页码:10683 / 10693
页数:11
相关论文
共 50 条
  • [41] Nature-Inspired N, O Co-Coordinated Manganese Single-Atom Catalyst for Efficient Hydrogen Peroxide Electrosynthesis
    Zeng, Yuan
    Tan, Xin
    Zhuang, Zewen
    Chen, Chen
    Peng, Qing
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (04)
  • [42] Selective oxygen electroreduction to hydrogen peroxide in acidic media: The superiority of single-atom catalysts
    Luo, Ergui
    Yang, Tongtong
    Liang, Jingyi
    Chang, Yuhong
    Zhang, Junming
    Hu, Tianjun
    Ge, Junjie
    Jia, Jianfeng
    NANO RESEARCH, 2024, 17 (06) : 4668 - 4681
  • [43] Rational design principles of single-atom catalysts for hydrogen production and hydrogenation
    Wang, Zhidong
    Yuan, Xinyue
    Guo, Han
    Zhang, Xin
    Peng, Jiatian
    Pan, Yuan
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (21) : 8019 - 8056
  • [44] Selective oxygen electroreduction to hydrogen peroxide in acidic media: The superiority of single-atom catalysts
    Ergui Luo
    Tongtong Yang
    Jingyi Liang
    Yuhong Chang
    Junming Zhang
    Tianjun Hu
    Junjie Ge
    Jianfeng Jia
    Nano Research, 2024, 17 : 4668 - 4681
  • [45] Palladium Single-Atom Assembly as a Formate Oxidase Mimic for the Enzymatic Synthesis of Hydrogen Peroxide
    Li, Xiaoqi
    Ding, Jiao
    Yu, Zhixuan
    Xu, Lili
    Zhao, Jianguo
    Chen, Jinxing
    Dong, Shaojun
    CCS CHEMISTRY, 2025, 7 (03): : 776 - 785
  • [46] Fe-N-C Single-Atom Nanozymes for the Intracellular Hydrogen Peroxide Detection
    Jiao, Lei
    Xu, Weiqing
    Yan, Hongye
    Wu, Yu
    Liu, Chunrong
    Du, Dan
    Lin, Yuehe
    Zhu, Chengzhou
    ANALYTICAL CHEMISTRY, 2019, 91 (18) : 11994 - 11999
  • [47] High performance catalyst CoNP for efficient electrochemical production of hydrogen peroxide
    Ho, Ko-Shan
    Hung, Kuan-Ying
    Hsiao, Yu-Lin
    Tu, Hsiu-Chung
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (01):
  • [48] Carbon-Based Single-Atom Catalysts for Advanced Applications
    Gawande, Manoj B.
    Fornasiero, Paolo
    Zboril, Radek
    ACS CATALYSIS, 2020, 10 (03): : 2231 - 2259
  • [49] Advanced carbon nitride-based single-atom photocatalysts
    Zhang, Zifan
    Xiang, Kun
    Wang, Haitao
    Li, Xin
    Zou, Jing
    Liang, Guijie
    Jiang, Jizhou
    SUSMAT, 2024, 4 (05):
  • [50] Theoretical study of the efficiencies of graphyne supported Mo single-atom catalyst (SAC) and Mo-Ni dual-atom catalyst (DAC) on hydrogen evolution reaction
    Daghooghi, Pardis
    Tavakol, Hossein
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2025, 33 (04) : 370 - 384