ON THE EULER FUNCTION OF LINEARLY RECURRENT SEQUENCES

被引:0
|
作者
Luca, Florian [1 ]
Manape, Makoko campbell [2 ]
机构
[1] Stellenbosch Univ, Math Div, Stellenbosch, South Africa
[2] Univ Witwatersrand, Sch Math, Johannesburg, South Africa
来源
FIBONACCI QUARTERLY | 2024年 / 62卷 / 04期
关键词
ARITHMETIC FUNCTIONS; FIBONACCI;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that if (U-n)(n >= 1) is any nondegenerate linearly recurrent sequence of integers whose general term is up to sign not a polynomial in n, then the inequality phi (|U-n|) >= |U-phi(n)|holds on a set of positive integers n of density 1, where phi is the Euler function.We show that the set of n <= x for which the above inequality fails has counting function O-U(x/log x ).
引用
收藏
页码:316 / 328
页数:13
相关论文
共 50 条