ON THE EULER FUNCTION OF LINEARLY RECURRENT SEQUENCES

被引:0
|
作者
Luca, Florian [1 ]
Manape, Makoko campbell [2 ]
机构
[1] Stellenbosch Univ, Math Div, Stellenbosch, South Africa
[2] Univ Witwatersrand, Sch Math, Johannesburg, South Africa
来源
FIBONACCI QUARTERLY | 2024年 / 62卷 / 04期
关键词
ARITHMETIC FUNCTIONS; FIBONACCI;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that if (U-n)(n >= 1) is any nondegenerate linearly recurrent sequence of integers whose general term is up to sign not a polynomial in n, then the inequality phi (|U-n|) >= |U-phi(n)|holds on a set of positive integers n of density 1, where phi is the Euler function.We show that the set of n <= x for which the above inequality fails has counting function O-U(x/log x ).
引用
收藏
页码:316 / 328
页数:13
相关论文
共 50 条
  • [1] A fast algorithm for solving linearly recurrent sequences
    Hyun, Seung Gyu
    Melczer, Stephen
    St-Pierre, Catherine
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2018, 52 (03): : 100 - 103
  • [2] Sections and lacunary sums of linearly recurrent sequences
    Verde-Star, L
    ADVANCES IN APPLIED MATHEMATICS, 1999, 23 (02) : 176 - 197
  • [3] On (Almost) Realizable Subsequences of Linearly Recurrent Sequences
    Luca, Florian
    Ward, Thomas
    JOURNAL OF INTEGER SEQUENCES, 2023, 26 (04)
  • [4] A QUADRATIC PROPERTY OF CERTAIN LINEARLY RECURRENT SEQUENCES
    BASTIDA, JR
    DELEON, MJ
    FIBONACCI QUARTERLY, 1981, 19 (02): : 144 - 146
  • [5] ALMOST-RECURSIVENESS OF RECIPROCALS OF LINEARLY RECURRENT SEQUENCES
    Hendel, Russell Jay
    FIBONACCI QUARTERLY, 2011, 49 (01): : 41 - 50
  • [6] Secure linear algebra using linearly recurrent sequences
    Kiltz, Eike
    Mohassel, Payman
    Weinreb, Enav
    Franklin, Matthew
    THEORY OF CRYPTOGRAPHY, PROCEEDINGS, 2007, 4392 : 291 - +
  • [7] A Comparison of Algorithms for Proving Positivity of Linearly Recurrent Sequences
    Nuspl, Philipp
    Pillwein, Veronika
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING (CASC 2022), 2022, 13366 : 268 - 287
  • [8] The Euler totient function on Lucas sequences
    Saunders, J. C.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (02) : 293 - 330
  • [9] Values of the euler function in various sequences
    Banks, WD
    Ford, K
    Luca, F
    Pappalardi, F
    Shparlinski, IE
    MONATSHEFTE FUR MATHEMATIK, 2005, 146 (01): : 1 - 19
  • [10] Values of the Euler Function in Various Sequences
    William D. Banks
    Kevin Ford
    Florian Luca
    Francesco Pappalardi
    Igor E. Shparlinski
    Monatshefte für Mathematik, 2005, 146 : 1 - 19