Structured illumination microscopy based on Kramers-Kronig relations for quantitative phase reconstruction

被引:0
|
作者
Wang, Yiran [1 ]
Li, Yutong [1 ]
Li, Ziyang [1 ]
Zhou, Xuyang [1 ]
Ji, Yu [1 ]
Liu, Gangshan [1 ]
Zhao, Pengtao [1 ]
Yang, Shurui [1 ]
Liu, Zhengjun [1 ]
Liu, Shutian [1 ]
机构
[1] Harbin Inst Technol, Sch Phys, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
CONTRAST MICROSCOPY; RESOLUTION LIMIT; FLUORESCENCE; IMAGE;
D O I
10.1364/OL.544625
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Structured illumination microscopy (SIM) is a widely applied fluorescence super-resolution imaging technique. It can also serve as high-throughput imaging in coherent imaging systems. However, coherent SIM requires additional qualitative/quantitative phase imaging methods to acquire phase information. This paper proposes a structured illumination microscopy technique based on the Kramers-Kronig relations (KK-SIM) that achieves quantitative phase imaging without the need for extra technical assistance and relies solely on the spatial-domain intensity images reconstructed through conventional SIM. KK-SIM utilizes a non-iterative approach to recover intensity into amplitude and phase, maintaining SIM's high acquisition speed and reconstruction efficiency. Our work enables highthroughput quantitative phase imaging using conventional SIM experimental setups and data post-processing, making SIM suitable for label-free, noninvasive dynamic observalar technologies, are reserved.
引用
收藏
页码:6801 / 6804
页数:4
相关论文
共 50 条
  • [21] SIMPLE DEDUCTION FOR THE KRAMERS-KRONIG RELATIONS
    GALISHEV, VS
    OPTIKA I SPEKTROSKOPIYA, 1960, 8 (03): : 417 - 419
  • [22] DIELECTRIC PERMITTIVITY AND KRAMERS-KRONIG RELATIONS
    LETRAON, A
    BURGAT, MD
    LETRAON, F
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B, 1976, 282 (02): : 25 - 27
  • [23] Single-shot resolution-enhancement quantitative phase imaging based on Kramers-Kronig relations
    Chen, Xiang
    Yao, Sihong
    Yan, Xuan
    Ding, Hao
    Ma, Jun
    Yuan, Caojin
    OPTICS LETTERS, 2023, 48 (13) : 3563 - 3566
  • [24] Kramers-Kronig relations and precision limits in quantum phase estimation
    Gianani, Ilaria
    Albarelli, Francesco
    Verna, Adriano
    Cimini, Valeria
    Demkowicz-Dobrzanski, Rafal
    Barbieri, Marco
    OPTICA, 2021, 8 (12): : 1642 - 1645
  • [26] ANALYSIS OF KRAMERS-KRONIG RELATIONS IN MODULATION SPECTROSCOPY
    PRANGE, RE
    DREW, HD
    RESTORFF, JB
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1977, 10 (24): : 5083 - 5088
  • [27] Differential forms of the Kramers-Kronig dispersion relations
    Waters, KR
    Hughes, MS
    Mobley, J
    Miller, JG
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2003, 50 (01) : 68 - 76
  • [28] ON THE KRAMERS-KRONIG RELATION FOR THE PHASE SPECTRUM
    NASH, PL
    BELL, RJ
    ALEXANDER, R
    JOURNAL OF MODERN OPTICS, 1995, 42 (09) : 1837 - 1842
  • [29] Differential multiply subtractive Kramers-Kronig relations
    Granot, Er'el
    Ben-Aderet, Yossi
    Sternklar, Shmuel
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2008, 25 (04) : 609 - 613
  • [30] CAUSALITE ET RELATIONS DE KRAMERS-KRONIG
    VANKAMPEN, NG
    JOURNAL DE PHYSIQUE ET LE RADIUM, 1961, 22 (03): : 179 - 191