Structured illumination microscopy based on Kramers-Kronig relations for quantitative phase reconstruction

被引:0
|
作者
Wang, Yiran [1 ]
Li, Yutong [1 ]
Li, Ziyang [1 ]
Zhou, Xuyang [1 ]
Ji, Yu [1 ]
Liu, Gangshan [1 ]
Zhao, Pengtao [1 ]
Yang, Shurui [1 ]
Liu, Zhengjun [1 ]
Liu, Shutian [1 ]
机构
[1] Harbin Inst Technol, Sch Phys, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
CONTRAST MICROSCOPY; RESOLUTION LIMIT; FLUORESCENCE; IMAGE;
D O I
10.1364/OL.544625
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Structured illumination microscopy (SIM) is a widely applied fluorescence super-resolution imaging technique. It can also serve as high-throughput imaging in coherent imaging systems. However, coherent SIM requires additional qualitative/quantitative phase imaging methods to acquire phase information. This paper proposes a structured illumination microscopy technique based on the Kramers-Kronig relations (KK-SIM) that achieves quantitative phase imaging without the need for extra technical assistance and relies solely on the spatial-domain intensity images reconstructed through conventional SIM. KK-SIM utilizes a non-iterative approach to recover intensity into amplitude and phase, maintaining SIM's high acquisition speed and reconstruction efficiency. Our work enables highthroughput quantitative phase imaging using conventional SIM experimental setups and data post-processing, making SIM suitable for label-free, noninvasive dynamic observalar technologies, are reserved.
引用
收藏
页码:6801 / 6804
页数:4
相关论文
共 50 条
  • [1] Spectrum sampling optimization for quantitative phase imaging based on Kramers-Kronig relations
    Li, Yutong
    Wen, Xiu
    Sun, Ming
    Zhou, Xuyang
    Ji, Yu
    Huang, Guancheng
    Zhou, Keya
    Liu, Shutian
    Liu, Zhengjun
    OPTICS LETTERS, 2022, 47 (11) : 2786 - 2789
  • [2] Fast quantitative phase imaging based on Kramers-Kronig relations in space domain
    Li, Yutong
    Shen, Cheng
    Tan, Jiubin
    Wen, Xiu
    Sun, Ming
    Huang, Guancheng
    Liu, Shutian
    Liu, Zhengjun
    OPTICS EXPRESS, 2021, 29 (25) : 41067 - 41080
  • [3] On the Kramers-Kronig relations
    José M. Carcione
    Fabio Cavallini
    Jing Ba
    Wei Cheng
    Ayman N. Qadrouh
    Rheologica Acta, 2019, 58 : 21 - 28
  • [4] On the Kramers-Kronig relations
    Carcione, Jose M.
    Cavallini, Fabio
    Ba, Jing
    Cheng, Wei
    Qadrouh, Ayman N.
    RHEOLOGICA ACTA, 2019, 58 (1-2) : 21 - 28
  • [5] NOTE ON THE KRAMERS-KRONIG RELATIONS
    BRACHMAN, MK
    JOURNAL OF APPLIED PHYSICS, 1955, 26 (05) : 497 - 498
  • [6] Applications of Kramers-Kronig Relations
    Brezeanu, I. B.
    Paraschivoiu, P. A.
    Negroiu, R.
    Chiva, L. A.
    2017 IEEE 23RD INTERNATIONAL SYMPOSIUM FOR DESIGN AND TECHNOLOGY IN ELECTRONIC PACKAGING (SIITME), 2017, : 82 - 85
  • [7] Kramers-Kronig relations for an interferometer
    Kop, RHJ
    deVries, P
    Sprik, R
    Lagendijk, A
    OPTICS COMMUNICATIONS, 1997, 138 (1-3) : 118 - 126
  • [8] CALCULATION OF SPECTRUM OF PHASE USING KRAMERS-KRONIG RELATIONS
    MAKAROVA, EG
    MOROZOV, VN
    OPTIKA I SPEKTROSKOPIYA, 1976, 40 (02): : 240 - 244
  • [9] KRAMERS-KRONIG RELATIONS IN NONLINEAR OPTICS
    HUTCHINGS, DC
    SHEIKBAHAE, M
    HAGAN, DJ
    VANSTRYLAND, EW
    OPTICAL AND QUANTUM ELECTRONICS, 1992, 24 (01) : 1 - 30
  • [10] KRAMERS-KRONIG RELATIONS FOR INTERSTELLAR POLARIZATION
    MARTIN, PG
    ASTROPHYSICAL JOURNAL, 1975, 202 (02): : 389 - 392