Global-local adaptive meshing method for phase-field fracture modeling

被引:0
|
作者
Cheng, Fengyu [1 ]
Yu, Hao [1 ]
Wang, Quan [1 ]
Huang, Hanwei [1 ]
Xu, Wenlong [1 ]
Wu, Hengan [1 ]
机构
[1] Univ Sci & Technol China, Dept Modern Mech, CAS Key Lab Mech Behav & Design Mat, Hefei 230027, Peoples R China
基金
中国国家自然科学基金;
关键词
Global-local adaptive meshing method; Phase-field model; Normalized nodal density field; Global crack sampling; Local node seeding; FINITE-ELEMENT APPROXIMATION; BRITTLE-FRACTURE; CRACK-PROPAGATION; FORMULATION; REFINEMENT; FAILURE; GROWTH;
D O I
10.1016/j.cma.2025.117846
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work develops a global-local adaptive meshing method for the phase-field model of brittle fracture, offering flexible adjustment of mesh density to produce seamless and high-quality adaptive meshes. The method first establishes a direct mapping from phase-field values and displacement errors to a normalized nodal density field, which is used to control the computational accuracy. On this basis, a sampling procedure is performed by detecting the maximum value to progressively place sampling nodes, ensuring that first-level nodes are placed globally while preserving crack location information. Subsequently, a hexagonal seeding algorithm is used to multiply nodes, where the spacing of generated seeds (i.e., higher-level nodes) is adaptively adjusted based on local nodal density requirements to regulate element sizes. A spatial assessment algorithm is utilized to compare the expected nodal spacing of the newly generated node with its distance to existing nodes, which serves as a termination criterion for the loop of the seeding algorithm and effectively prevents the occurrence of low-quality elements. After the seeding process of all nodes is completed, all generated nodes are connected by constrained Delaunay triangulation. This method has been discussed under classical brittle fracture cases with various control parameters (e.g., the mapping function, the expected maximum/minimum element size, and the distance factor) to validate its advantage of reducing degrees of freedom and improving solution efficiency.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] A spatially adaptive phase-field model of fracture
    Phansalkar, Dhananjay
    Weinberg, Kerstin
    Ortiz, Michael
    Leyendecker, Sigrid
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 395
  • [22] Adaptive phase-field modeling of fracture propagation in bi-layered materials
    Khan, Salman
    Muixi, Alba
    Annavarapu, Chandrasekhar
    Rodriguez-Ferran, Antonio
    ENGINEERING FRACTURE MECHANICS, 2023, 292
  • [23] Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling
    Jaccon, Adrien
    Prabel, Benoit
    Molnar, Gergely
    Bluthe, Joffrey
    Gravouil, Anthony
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2023, 224
  • [24] Adaptive finite element modeling of phase-field fracture driven by hydrogen embrittlement
    Dinachandra, Moirangthem
    Alankar, Alankar
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 391
  • [25] Phase-Field Modeling Fracture in Anisotropic Materials
    Li, Haifeng
    Wang, Wei
    Cao, Yajun
    Liu, Shifan
    ADVANCES IN CIVIL ENGINEERING, 2021, 2021
  • [26] Variational phase-field fracture modeling with interfaces
    Yoshioka, Keita
    Mollaali, Mostafa
    Kolditz, Olaf
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 384
  • [27] Phase-Field Modeling of Fracture in Ferroelectric Materials
    Amir Abdollahi
    Irene Arias
    Archives of Computational Methods in Engineering, 2015, 22 : 153 - 181
  • [28] Multiscale Phase-Field Modeling of Fracture in Nanostructures
    Jahanshahi, Mohsen
    Khoei, Amir Reza
    Asadollahzadeh, Niloofar
    Aldakheel, Fadi
    JOURNAL OF MULTISCALE MODELLING, 2023, 14 (04)
  • [29] Phase-field fracture modeling for creep crack
    Xie, Qikun
    Qi, Hongyu
    Li, Shaolin
    Yang, Xiaoguang
    Shi, Duoqi
    Li, Fulin
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2023, 124
  • [30] Phase-field fracture modeling for large structures
    Lo, Yu-Sheng
    Hughes, Thomas J. R.
    Landis, Chad M.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2023, 171