Dietary threonine influences antioxidant capacity and immune status in juvenile largemouth bass ( Micropterus salmoides) )

被引:2
|
作者
Yu, Heng [1 ]
Ren, Mingchun [1 ,2 ]
Huang, Dongyu [2 ]
Zhang, Lu [3 ]
Chen, Xiaoru [3 ]
Wang, Yongli [3 ]
Liang, Hualiang [1 ,2 ]
机构
[1] Nanjing Agr Univ, Wuxi Fisheries Coll, Wuxi 214081, Peoples R China
[2] Chinese Acad Fishery Sci, Freshwater Fisheries Res Ctr, Key Lab Integrated Rice Fish Farming Ecol, Minist Agr & Rural Affairs, Wuxi 214081, Peoples R China
[3] Tongwei Agr Dev Co Ltd, Chengdu 610093, Peoples R China
基金
中国国家自然科学基金;
关键词
Threonine; Juvenile largemouth bass(Micropterus salmoides); PERK/ATF4/CHOP pathway; Antioxidant capacity; Inflammation; ENDOPLASMIC-RETICULUM STRESS; NF-KAPPA-B; BLUNT SNOUT BREAM; CARP CTENOPHARYNGODON-IDELLA; AFFECTS GROWTH-PERFORMANCE; SIGNALING MOLECULES; BODY-COMPOSITION; APOPTOSIS; INFLAMMATION; DEFICIENCY;
D O I
10.1016/j.aqrep.2024.102197
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
As a restricted amino acid, threonine (Thr) deficiency reduces antioxidant and immune capacity in fish. In the present study, six diets containing different Thr levels (1.39 %, 1.71 %, 1.95 %, 2.28 %, 2.58 %, and 2.65 %) were fed to largemouth bass (15 +/- 0.1 +/- 0.1 g) for 60 days. The present results showed that neither growth nor whole- body composition was affected by different Thr levels. And low dietary Thr levels (1.39 %) significantly decreased serum total protein (TP) and albumin (ALB) levels, but increased alkaline phosphatase (ALP) levels. And 1.39 % Thr diet significantly decreased liver catalase (CAT) activity but increased malonaldehyde (MDA) levels, and the maximum total antioxidant capacity (T-AOC) was observed in response to the 1.95 % Thr diet. Liver proapoptotic factors ( bax and caspase9) ) were significantly elevated in fish fed the 1.39 % Thr diet. The nuclear factor kappa B ( nf-kappa b ) and the NF-kappa B-mediated inflammatory cytokines were significantly increased in fish fed the 1.39 % Thr diet. The mRNA levels of protein kinase R (PKR)-like endoplasmic reticulum kinase (perk), perk ), eukaryotic translation initiation factor 2 ( eif2 alpha ), activating transcription factor 4 (atf4), atf4 ), and C/EBP-homologous protein (chop), chop ), which are factors in the PERK/ATF4/CHOP pathway, one of the unfolded protein response (UPR) signaling pathways, were significantly increased by the 1.39 % Thr diet. The present study showed that low dietary Thr levels caused oxidative damage, reduced immunity, might affected PERK-ATF4-CHOP signaling to induce apoptosis, and via NF-kappa B signaling to trigger an inflammatory response in largemouth bass. Based on the TP, ALB, CAT, and MDA levels, the dietary Thr requirements for juvenile largemouth bass were estimated to be 2.18 %, 2.29 %, 1.92 %, and 1.88 %. Furthermore, these findings provided a new perspective that low dietary amino acid levels may trigger apoptosis and inflammatory responses in fish through the UPR signaling pathway.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Optimal dietary zinc inclusion improved growth performance, serum antioxidant capacity, immune status, and liver lipid and glucose metabolism of largemouth bass (Micropterus salmoides)
    Gu, Dianchao
    Mao, Xiangjie
    Azm, Fatma Ragab Abouel
    Zhu, Wenhuan
    Huang, Tianle
    Wang, Xiaoyu
    Ni, Xinyu
    Zhou, Meng
    Shen, Jianzhong
    Tan, Qingsong
    FISH & SHELLFISH IMMUNOLOGY, 2024, 144
  • [22] Effects of dietary nano-iron on growth, hematological parameters, immune antioxidant response, and hypoxic tolerance in juvenile Largemouth Bass (Micropterus salmoides)
    He, Kuo
    Huang, Rui
    Cheng, Liangshun
    Liu, Qiao
    Zhang, Yaoyi
    Yan, Haoxiao
    Hu, Yifan
    Zhao, Liulan
    Yang, Song
    AQUACULTURE REPORTS, 2023, 33
  • [23] Diet supplementation of organic zinc positively affects growth, antioxidant capacity, immune response and lipid metabolism in juvenile largemouth bass, Micropterus salmoides
    He, Xuanshu
    Chen, Anqi
    Liao, Zhihong
    Zhang, Yufan
    Lin, Gang
    Zhuang, Zhenxiao
    Liu, Yantao
    Wei, Hanlin
    Wang, Ziqiao
    Wang, Yingjie
    Niu, Jin
    BRITISH JOURNAL OF NUTRITION, 2023, 130 (10) : 1689 - 1703
  • [24] Exercise training promotes growth through hypertrophy and enhances capillarization and antioxidant capacity in juvenile largemouth bass (Micropterus salmoides)
    Zhao, Liulan
    Xu, Lai
    Yang, Yi
    He, Qishuang
    Liu, Qiao
    Luo, Jie
    Luo, Wei
    Zhang, Xin
    Yan, Taiming
    Yang, Song
    AQUACULTURE, 2023, 562
  • [25] Inactivated lactobacillus plantarum promoted growth performance, intestine health and antioxidant capacity of juvenile largemouth bass, Micropterus salmoides
    Liu, Wenkai
    Zhang, Jianmin
    Liu, Jingjing
    Wang, Xuan
    Dong, Lixue
    Gao, Xin
    Wen, Hua
    Jiang, Ming
    Meng, Xiaolin
    Tian, Juan
    AQUACULTURE REPORTS, 2024, 36
  • [26] Effect of high dietary starch levels on growth, hepatic glucose metabolism, oxidative status and immune response of juvenile largemouth bass, Micropterus salmoides
    Lin, Shi-Mei
    Shi, Chao-Ming
    Mu, Ming-Ming
    Chen, Yong-Jun
    Luo, Li
    FISH & SHELLFISH IMMUNOLOGY, 2018, 78 : 121 - 126
  • [27] Effects of Five Dietary Carbohydrate Sources on Growth, Glucose Metabolism, Antioxidant Capacity and Immunity of Largemouth Bass (Micropterus salmoides)
    Qian, Pengcheng
    Liu, Yan
    Zhang, Hao
    Zhang, Penghui
    Xie, Yuanyuan
    Wu, Chenglong
    ANIMALS, 2024, 14 (10):
  • [28] Dietary Supplementation of Astragalus membranaceus Extract Affects Growth Performance, Antioxidant Capacity, Immune Response, and Energy Metabolism of Largemouth Bass (Micropterus salmoides)
    He, Xuanshu
    Chen, Anqi
    Liao, Zhihong
    Zhong, Jian
    Cheng, Anda
    Xue, Xinghua
    Li, Fuyuan
    Chen, Mengdie
    Yao, Rong
    Zhao, Wei
    Niu, Jin
    AQUACULTURE NUTRITION, 2024, 2024
  • [29] Effects of dietary yeast hydrolysate on the growth, antioxidant response, immune response and disease resistance of largemouth bass (Micropterus salmoides)
    Gong, Yulong
    Yang, Fan
    Hu, Junpeng
    Liu, Cui
    Liu, Haokun
    Han, Dong
    Jin, Junyan
    Yang, Yunxia
    Zhu, Xiaoming
    Yi, Jianhua
    Xie, Shouqi
    FISH & SHELLFISH IMMUNOLOGY, 2019, 94 : 548 - 557
  • [30] A study of the potential effect of yellow mealworm (Tenebrio molitor) substitution for fish meal on growth, immune and antioxidant capacity in juvenile largemouth bass (Micropterus salmoides)
    Gu, Jiaze
    Liang, Hualiang
    Ge, Xianping
    Xia, Dong
    Pan, Liangkun
    Mi, Haifeng
    Ren, Mingchun
    FISH & SHELLFISH IMMUNOLOGY, 2022, 120 : 214 - 221