Early Detection of Wildlife Disease Pathogens Using CRISPR-Cas System Methods

被引:1
|
作者
Perez, Adam A. [1 ]
Vazquez-Meves, Guelaguetza [2 ]
Hunter, Margaret E. [1 ]
机构
[1] US Geol Survey, Wetland & Aquat Res Ctr, 7920 NW 71st St, Gainesville, FL 32653 USA
[2] US Geol Survey, Ecosyst Mission Area, Reston, VA USA
来源
CRISPR JOURNAL | 2024年 / 7卷 / 06期
关键词
RECOMBINASE POLYMERASE AMPLIFICATION; NUCLEIC-ACID DETECTION; H5N1 AVIAN INFLUENZA; SWINE-FEVER VIRUS; YERSINIA-PESTIS; UNITED-STATES; DIGITAL PCR; PLAGUE; DNA; ASSAY;
D O I
10.1089/crispr.2024.0030
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Wildlife diseases are a considerable threat to human health, conservation, and the economy. Surveillance is a critical component to mitigate the impact of animal diseases in these sectors. To monitor human diseases, CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated protein) biosensors have proven instrumental as diagnostic tools capable of detecting unique DNA and RNA sequences related to their associated pathogens. However, despite the significant advances in the general development of CRISPR-Cas biosensors, their use to support wildlife disease management is lagging. In some cases, wildlife diseases of concern could be rapidly surveyed using these tools with minimal technical, operational, or cost requirements to end users. This review explores the potential to further leverage this technology to advance wildlife disease monitoring and highlights how concerted standardization of protocols can help to ensure data reliability.
引用
收藏
页码:327 / 342
页数:16
相关论文
共 50 条
  • [31] The Phylogenetic Study of the CRISPR-Cas System in Enterobacteriaceae
    Kushwaha, Simran Krishnakant
    Kumar, Aryahi A.
    Gupta, Hardik
    Marathe, Sandhya Amol
    CURRENT MICROBIOLOGY, 2023, 80 (06)
  • [32] The CRISPR-Cas system: beyond genome editing
    Moineau, Sylvain
    Croteau, Felix R.
    Rousseau, Genevieve M.
    M S-MEDECINE SCIENCES, 2018, 34 (10): : 813 - 819
  • [33] CRISPR-Cas system for biomedical diagnostic platforms
    Wang, Zhen
    Cui, Wenguo
    VIEW, 2020, 1 (03)
  • [34] A hypothesis: CRISPR-Cas as a minimal cognitive system
    Yakura, Hidetaka
    ADAPTIVE BEHAVIOR, 2019, 27 (03) : 167 - 173
  • [35] Applications of CRISPR-Cas System in Tumor Biology
    Ma, Mengdan
    Liu, Yuchen
    Huang, Weiren
    ONCOLOGIE, 2021, 23 (04) : 463 - 492
  • [36] Lamarckian realities: the CRISPR-Cas system and beyond
    Eva Jablonka
    Biology & Philosophy, 2019, 34
  • [37] The Phylogenetic Study of the CRISPR-Cas System in Enterobacteriaceae
    Simran Krishnakant Kushwaha
    Aryahi A. Kumar
    Hardik Gupta
    Sandhya Amol Marathe
    Current Microbiology, 2023, 80
  • [38] Porphyromonas gingivalis and its CRISPR-Cas system
    Chen, Tsute
    Olsen, Ingar
    JOURNAL OF ORAL MICROBIOLOGY, 2019, 11 (01):
  • [39] Engineering Translational Activators with CRISPR-Cas System
    Du, Pei
    Miao, Chensi
    Lou, Qiuli
    Wang, Zefeng
    Lou, Chunbo
    ACS SYNTHETIC BIOLOGY, 2016, 5 (01): : 74 - 80
  • [40] Methods for CRISPR-Cas as Ribonucleoprotein Complex Delivery In Vivo
    Bykonya, Alesya G.
    Lavrov, Alexander, V
    Smirnikhina, Svetlana A.
    MOLECULAR BIOTECHNOLOGY, 2023, 65 (02) : 181 - 195