Classification models for identifying Pterocarpus santalinus L.f. using NIR spectroscopy data

被引:0
|
作者
Qi, Yuanda [1 ]
Li, Yaoxiang [1 ]
Zhang, Zheyu [1 ]
Zhou, Jiaqi [1 ]
Qin, Zijian [1 ]
Li, Yiwei [1 ]
Chen, Chengwu [1 ]
机构
[1] Northeast Forestry Univ, Coll Mech & Elect Engn, Harbin 150040, Peoples R China
关键词
<italic>Pterocarpus santalinus</italic> L.f; long short-term memory network; near-infrared spectroscopy; authenticity identification; support vector machine; random forest; NEAR-INFRARED SPECTROSCOPY; WOOD IDENTIFICATION; PREDICTION;
D O I
10.1515/hf-2024-0066
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Pterocarpus santalinus L.f. (P. santalinus), protected under the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), is a high-priced, slow-growing, and scarce wood primarily used in crafting high-end furniture. The international timber trade currently faces issues of counterfeit P. santalinus, with commonly used substitutes including Dalbergia louvelii R.Viguier, Pterocarpus tinctorius Welw., Gluta renghas L. and Baphia nitida Lodd. This study aims to develop a P. santalinus authenticity identification model based on near-infrared spectroscopy (NIRS) technology. The NIR spectral pretreatment involved the use of four methods, either individually or in combination: multiplicative scatter correction (MSC), moving average smoothing (MAS), Savitzky-Golay (S-G), autoscaling (AUTO) and standard normal variate (SNV). An authenticity identification model for P. santalinus based on long short-term memory (LSTM) was established and compared with commonly used support vector machines (SVM) and random forest (RF) models. The results indicate that the accuracy of the MSC-LSTM model is 97.1 %, with precision, recall, and F1 score all exceeding 0.85. In identifying P. santalinus in the test set, the MSC-LSTM model has an error rate of only 4.8 %. LSTM performs outstandingly across multiple indicators, demonstrating its ability to identify P. santalinus authenticity. The developed MSC-LSTM P. santalinus authenticity identification model shows enhanced accuracy compared to SVM and RF, significantly reducing misidentification of P. santalinus.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [31] Classification by bitterness of intact almonds analysed in bulk using NIR spectroscopy
    Vega-Castellote, Miguel
    Sanchez, Maria-Teresa
    Torres, Irina
    Garrido-Varo, Ana
    Perez-Marin, Dolores
    SENSING FOR AGRICULTURE AND FOOD QUALITY AND SAFETY XIII, 2021, 11754
  • [32] Classification of brands of instant noodles using Vis/NIR spectroscopy and chemometrics
    Liu, Fei
    He, Yong
    FOOD RESEARCH INTERNATIONAL, 2008, 41 (05) : 562 - 567
  • [33] De novo transcriptome assembly and development of EST-SSR markers for Pterocarpus santalinus L. f. (Red sanders), a threatened and endemic tree of India
    Agasthikumar, Sindhu
    Patturaj, Maheswari
    Samji, Aghila
    Aiyer, Balasubramanian
    Munusamy, Aiswarya
    Kannan, Nithishkumar
    Arivazhagan, Vijayakumar
    Warrier, Rekha R.
    Ramasamy, Yasodha
    GENETIC RESOURCES AND CROP EVOLUTION, 2022, 69 (07) : 2469 - 2484
  • [34] De novo transcriptome assembly and development of EST-SSR markers for Pterocarpus santalinus L. f. (Red sanders), a threatened and endemic tree of India
    Sindhu Agasthikumar
    Maheswari Patturaj
    Aghila Samji
    Balasubramanian Aiyer
    Aiswarya Munusamy
    Nithishkumar Kannan
    Vijayakumar Arivazhagan
    Rekha R. Warrier
    Yasodha Ramasamy
    Genetic Resources and Crop Evolution, 2022, 69 : 2469 - 2484
  • [35] Robust prediction models for quality parameters in Japanese plums (Prunus salicina L.) using NIR spectroscopy
    Louw, Esme D.
    Theron, Karen I.
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2010, 58 (03) : 176 - 184
  • [36] Prediction Models for Soil Properties Using VIS-NIR Spectroscopy
    Ando, Masaya
    Arakawa, Masamoto
    Funatsu, Kimito
    JOURNAL OF COMPUTER AIDED CHEMISTRY, 2009, 10 : 53 - 62
  • [37] Genetic transformation of the medicinal plant Salvia runcinata L.f. using Agrobacterium rhizogenes
    Figlan, S.
    Makunga, N. P.
    SOUTH AFRICAN JOURNAL OF BOTANY, 2017, 112 : 193 - 202
  • [38] Rapid and Green Classification Method of Bacteria Using Machine Learning and NIR Spectroscopy
    Farias, Leovergildo R.
    Panero, Joao dos S.
    Riss, Jordana S. P.
    Correa, Ana P. F.
    Vital, Marcos J. S.
    Panero, Francisco dos S.
    SENSORS, 2023, 23 (17)
  • [39] Classification of brands of instant noodles using Vis/NIR spectroscopy and BP model
    Liu, Fei
    He, Yong
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 635 - 639
  • [40] DRYING MODELS AND DESICCATION TOLERANCE OF Tectona grandis L.f. AND Gmelina arborea Roxb. SEEDS
    Correa, Ender M.
    Alvarez, Slim C.
    Espitia, Miguel M.
    Cardona, Carlos E.
    REVISTA DE CIENCIAS AGRICOLAS, 2013, 30 (02): : 20 - 33