Adequate structuring of the latent space for easy classification and out-of-distribution detection

被引:0
|
作者
Ossonce, Maxime [1 ]
Duhamel, Pierre [2 ]
Alberge, Florence [3 ]
机构
[1] ESME, F-94200 Ivry, France
[2] Univ Paris Saclay, CNRS, Cent Supelec, Lab Signaux & Syst L2S, F-91190 Gif Sur Yvette, France
[3] Univ Paris Saclay, CNRS, ENS ParisSaclay, SATIE, F-91190 Gif Sur Yvette, France
关键词
D O I
10.23919/EUSIPCO63174.2024.10715222
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Out-of-distribution (OoD) detection is the cornerstone of reliability in machine learning (ML) applications. Since OoD samples follow a different statistic than those on which the model is trained, the corresponding model decision is likely to be unreliable, and OoD samples must be identified as such. Moreover, OoD samples can follow any statistic, which calls for an unsupervised method (independent of the OoD statistics). It is already well known that variational auto-encoder (VAE) based classification can be improved by structuring the latent space in terms of the class centroids. In this paper, we extend this approach by adding an appropriate structure to the latent space for OoD detection. The corresponding performance is precisely analysed, demonstrating the benefits of the approach.
引用
收藏
页码:1776 / 1780
页数:5
相关论文
共 50 条
  • [41] Towards In-Distribution Compatible Out-of-Distribution Detection
    Wu, Boxi
    Jiang, Jie
    Ren, Haidong
    Du, Zifan
    Wang, Wenxiao
    Li, Zhifeng
    Cai, Deng
    He, Xiaofei
    Lin, Binbin
    Liu, Wei
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 10333 - 10341
  • [42] Out-of-Distribution Detection Using Outlier Detection Methods
    Diers, Jan
    Pigorsch, Christian
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT III, 2022, 13233 : 15 - 26
  • [43] On the Impact of Spurious Correlation for Out-of-Distribution Detection
    Ming, Yifei
    Yin, Hang
    Li, Yixuan
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 10051 - 10059
  • [44] Provable Guarantees for Understanding Out-of-Distribution Detection
    Morteza, Peyman
    Li, Yixuan
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 7831 - 7840
  • [45] Your Out-of-Distribution Detection Method is Not Robust!
    Azizmalayeri, Mohammad
    Moakhar, Arshia Soltani
    Zarei, Arman
    Zohrabi, Reihaneh
    Manzuri, Mohammad Taghi
    Rohban, Mohammad Hossein
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [46] Learning to Augment Distributions for Out-of-Distribution Detection
    Wang, Qizhou
    Fang, Zhen
    Zhang, Yonggang
    Liu, Feng
    Li, Yixuan
    Han, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [47] CONTINUAL LEARNING FOR OUT-OF-DISTRIBUTION PEDESTRIAN DETECTION
    Molahasani, Mahdiyar
    Etemad, Ali
    Greenspan, Michael
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2685 - 2689
  • [48] Boosting Out-of-distribution Detection with Typical Features
    Zhu, Yao
    Chen, Yuefeng
    Xie, Chuanlong
    Li, Xiaodan
    Zhang, Rong
    Xue, Hui
    Tian, Xiang
    Zheng, Bolun
    Chen, Yaowu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [49] Out-of-distribution detection by regaining lost clues
    Zhao, Zhilin
    Cao, Longbing
    Yu, Philip S.
    ARTIFICIAL INTELLIGENCE, 2025, 339
  • [50] Ensemble-Based Out-of-Distribution Detection
    Yang, Donghun
    Mai Ngoc, Kien
    Shin, Iksoo
    Lee, Kyong-Ha
    Hwang, Myunggwon
    ELECTRONICS, 2021, 10 (05) : 1 - 12