A systematic review of various load balancing approaches in cloud computing utilizing machine learning and deep learning

被引:0
|
作者
Sonia [1 ]
Nath, Rajender [1 ]
机构
[1] Kurukshetra Univ, Comp Sci & Applicat, Thanesar 136119, Haryana, India
关键词
Cloud computing; Load balancing; Container orchestration; Edge computing; Machine and deep learning-based approaches; OPTIMIZATION ALGORITHM;
D O I
10.1007/s41060-025-00718-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Load balancing in cloud computing plays a vital role in optimizing resource utilization, enhancing performance, and managing task allocation within dynamic and highly virtualized environments. This review paper comprehensively explores the diverse spectrum of load balancing methods employed in cloud computing, shedding light on their characteristics, advantages, and limitations. More advanced load balancing techniques leverage intelligent algorithms and real-time data to make dynamic decisions. Both machine and deep learning-based approaches, including reinforcement learning and neural networks, have gained prominence for their ability to adapt to changing workloads and traffic patterns. These methods exhibit great promise in optimizing resource allocation and improving overall system performance. Additionally, this review delves into emerging trends such as edge computing, hybrid cloud deployments, and container orchestration, exploring the evolution of load balancing strategies to meet the demands of these evolving paradigms. This review paper offers a thorough overview of load balancing techniques in cloud computing, equipping researchers, practitioners, and cloud architects with essential insights for choosing the most appropriate load balancing strategies tailored to their specific needs and use cases. It also highlights key challenges and outlines future research directions in this evolving field.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] A Systematic Review of Nature Inspired Load Balancing Algorithm in Heterogeneous Cloud Computing Enviourment
    Jain, Pankaj
    Sharma, Sanjay Kumar
    2017 CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY (CICT), 2017,
  • [42] Exploring Sign Language Detection on Smartphones: A Systematic Review of Machine and Deep Learning Approaches
    Alam, Iftikhar
    Hameed, Abdul
    Ziar, Riaz Ahmad
    ADVANCES IN HUMAN-COMPUTER INTERACTION, 2024, 2024
  • [43] Machine and Deep Learning-based XSS Detection Approaches: A Systematic Literature Review
    Thajeel, Isam Kareem
    Samsudin, Khairulmizam
    Hashim, Shaiful Jahari
    Hashim, Fazirulhisyam
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2023, 35 (07)
  • [44] Artificial intelligence, machine learning, and deep learning in rhinology: a systematic review
    Antonio Mario Bulfamante
    Francesco Ferella
    Austin Michael Miller
    Cecilia Rosso
    Carlotta Pipolo
    Emanuela Fuccillo
    Giovanni Felisati
    Alberto Maria Saibene
    European Archives of Oto-Rhino-Laryngology, 2023, 280 : 529 - 542
  • [45] Machine Learning and Deep Learning in Detection of Neonatal Seizures: A Systematic Review
    Naz, Ruya
    Orsal, Ozlem
    JOURNAL OF EVALUATION IN CLINICAL PRACTICE, 2025, 31 (03)
  • [46] Credit Card Fraud Detection Using Various Machine Learning and Deep Learning Approaches
    Gorte, Ashvini S.
    Mohod, S. W.
    Keole, R. R.
    Mahore, T. R.
    Pande, Sagar
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 3, 2023, 492 : 621 - 628
  • [47] Artificial intelligence, machine learning, and deep learning in rhinology: a systematic review
    Bulfamante, Antonio Mario
    Ferella, Francesco
    Miller, Austin Michael
    Rosso, Cecilia
    Pipolo, Carlotta
    Fuccillo, Emanuela
    Felisati, Giovanni
    Saibene, Alberto Maria
    EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2023, 280 (02) : 529 - 542
  • [48] Systematic Review of Deep Learning and Machine Learning Models in Biofuels Research
    Ardabili, Sina
    Mosavi, Amir
    Varkonyi-Koczy, Annamaria R.
    ENGINEERING FOR SUSTAINABLE FUTURE, 2020, 101 : 19 - 32
  • [49] A systematic review and meta-analysis of machine learning, deep learning, and ensemble learning approaches in predicting EV charging behavior
    Yaghoubi, Elaheh
    Yaghoubi, Elnaz
    Khamees, Ahmed
    Razmi, Darioush
    Lu, Tianguang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 135
  • [50] Batch Jobs Load Balancing Scheduling in Cloud Computing Using Distributional Reinforcement Learning
    Li, Tiangang
    Ying, Shi
    Zhao, Yishi
    Shang, Jianga
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2024, 35 (01) : 169 - 185