Polymer-Free and Dry Patterning of Wafer-Scale Two-Dimensional Semiconductors via van der Waals Delamination

被引:0
|
作者
Ding, Shuimei [1 ]
Liu, Yun [2 ]
Tao, Quanyang [1 ]
Chen, Yang [1 ]
Gao, Weiqi [1 ]
Niu, Wencheng [3 ]
Liu, Chang [3 ]
Li, Yunxin [1 ]
Liu, Xiao [1 ]
Gao, Jinghui [1 ]
Niu, Kaixin [1 ]
Kong, Lingan [1 ]
Ma, Likuan [1 ]
Lu, Donglin [1 ]
Wang, Yiliu [1 ]
Liao, Lei [3 ]
Feng, Qingliang [2 ]
Liu, Yuan [1 ]
机构
[1] Hunan Univ, Sch Phys & Elect, Key Lab Micronano Optoelect Devices, Minist Educ, Changsha 410082, Peoples R China
[2] Northwestern Polytech Univ, Coll Chem & Chem Engn, Xian 710072, Peoples R China
[3] Hunan Univ, Coll Semicond, Coll Integrated Circuits, Changsha 410082, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
dry patterning; polymer-free patterning; 2Dsemiconductors; 3D metal stamp; wafer scale; MOS2; TRANSISTORS;
D O I
10.1021/acs.nanolett.4c05884
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two-dimensional (2D) semiconductors have attracted a considerable amount of interest as channel materials for future transistors. Patterning of 2D semiconductors is crucial for separating continuous monolayers into independent units. However, the state-of-the-art 2D patterning process is largely based on photolithography and high-energy plasma/RIE etching, leading to unavoidable residues and degraded device uniformity, which remains a critical challenge for the practical application of 2D electronics. Here, we report a polymer-free and dry-patterning technique for wafer-scale 2D semiconductors. Upon lamination of a three-dimensional Au stamp onto monolayer MoS2 and then it being peeled away, the Au-contacted region will be effectively removed while the noncontacted regions are successfully left on its growth substrate. The fabricated MoS2 transistors exhibit a 100% device yield, increased carrier mobility, and much reduced device-to-device variation, compared to those of conventional wet-patterned devices. Our work provides a simple and rapid dry-patterning technique for 2D wafers, which is important for the lab-to-fab transition.
引用
收藏
页码:1689 / 1696
页数:8
相关论文
共 50 条
  • [31] Interaction- and defect-free van der Waals contacts between metals and two-dimensional semiconductors
    Gihyeon Kwon
    Yoon-Ho Choi
    Hyangsook Lee
    Hyeon-Sik Kim
    Jeahun Jeong
    Kwangsik Jeong
    Min Baik
    Hoedon Kwon
    Jaemin Ahn
    Eunha Lee
    Mann-Ho Cho
    Nature Electronics, 2022, 5 : 241 - 247
  • [32] Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals
    Carey, Benjamin J.
    Ou, Jian Zhen
    Clark, Rhiannon M.
    Berean, Kyle J.
    Zavabeti, Ali
    Chesman, Anthony S. R.
    Russo, Salvy P.
    Lau, Desmond W. M.
    Xu, Zai-Quan
    Bao, Qiaoliang
    Kevehei, Omid
    Gibson, Brant C.
    Dickey, Michael D.
    Kaner, Richard B.
    Daeneke, Torben
    Kalantar-Zadeh, Kourosh
    NATURE COMMUNICATIONS, 2017, 8
  • [33] Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals
    Benjamin J. Carey
    Jian Zhen Ou
    Rhiannon M. Clark
    Kyle J. Berean
    Ali Zavabeti
    Anthony S. R. Chesman
    Salvy P. Russo
    Desmond W. M. Lau
    Zai-Quan Xu
    Qiaoliang Bao
    Omid Kavehei
    Brant C. Gibson
    Michael D. Dickey
    Richard B. Kaner
    Torben Daeneke
    Kourosh Kalantar-Zadeh
    Nature Communications, 8
  • [34] Stacking transfer of wafer-scale graphene-based van der Waals superlattices
    Yuan, Guowen
    Liu, Weilin
    Huang, Xianlei
    Wan, Zihao
    Wang, Chao
    Yao, Bing
    Sun, Wenjie
    Zheng, Hang
    Yang, Kehan
    Zhou, Zhenjia
    Nie, Yuefeng
    Xu, Jie
    Gao, Libo
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [35] All-Solution-Processed Van der Waals Heterostructures for Wafer-Scale Electronics
    Kim, Jihyun
    Rhee, Dongjoon
    Song, Okin
    Kim, Miju
    Kwon, Yong Hyun
    Lim, Dong Un
    Kim, In Soo
    Mazanek, Vlastimil
    Valdman, Lukas
    Sofer, Zdenek
    Cho, Jeong Ho
    Kang, Joohoon
    ADVANCED MATERIALS, 2022, 34 (12)
  • [36] Stacking transfer of wafer-scale graphene-based van der Waals superlattices
    Guowen Yuan
    Weilin Liu
    Xianlei Huang
    Zihao Wan
    Chao Wang
    Bing Yao
    Wenjie Sun
    Hang Zheng
    Kehan Yang
    Zhenjia Zhou
    Yuefeng Nie
    Jie Xu
    Libo Gao
    Nature Communications, 14
  • [37] Heteroepitaxial Growth of High Optical Quality, Wafer-Scale van der Waals Heterostrucutres
    Ludwiczak, Katarzyna
    Dabrowska, Aleksandra Krystyna
    Binder, Johannes
    Tokarczyk, Mateusz
    Iwanski, Jakub
    Kurowska, Boguslawa
    Turczynski, Jakub
    Kowalski, Grzegorz
    Bozek, Rafal
    Stepniewski, Roman
    Pacuski, Wojciech
    Wysmolek, Andrzej
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (40) : 47904 - 47911
  • [38] Van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors
    Allen Jian Yang
    Kun Han
    Ke Huang
    Chen Ye
    Wen Wen
    Ruixue Zhu
    Rui Zhu
    Jun Xu
    Ting Yu
    Peng Gao
    Qihua Xiong
    X. Renshaw Wang
    Nature Electronics, 2022, 5 : 233 - 240
  • [39] Large excitonic effect on van der Waals interaction between two-dimensional semiconductors
    Yang, Jiabao
    Liu, Xiaofei
    Guo, Wanlin
    NANOSCALE, 2020, 12 (23) : 12639 - 12646
  • [40] Self-powered photodetectors based on two-dimensional van der Waals semiconductors
    Kim, Sion
    Kim, Minji
    Kim, Hyungjin
    NANO ENERGY, 2024, 127