Physics-informed machine learning for system reliability analysis and design with partially observed information

被引:1
|
作者
Xu, Yanwen [1 ]
Bansal, Parth [2 ]
Wang, Pingfeng [2 ]
Li, Yumeng [2 ]
机构
[1] Univ Texas Dallas, Dept Mech Engn, Richardson, TX 75080 USA
[2] Univ Illinois Urbana & Champaign, Dept Ind & Enterprise Syst Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Physics-informed machine learning; Partially observed information; Uncertainty quantification; Bayesian inference; Battery capacity estimation; Uncertainty propagation; Multi-fidelity data fusion; PREDICTING CAPACITY FADE;
D O I
10.1016/j.ress.2024.110598
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Constructing a high-fidelity predictive model is crucial for analyzing complex systems, optimizing system design, and enhancing system reliability. Although Gaussian Process (GP) models are well-known for their capability to quantify uncertainty, they rely heavily on data and necessitate a large representative dataset to establish a high-fidelity predictive model. Physics-informed Machine Learning (PIML) has emerged as a way to integrate prior physics knowledge and machine learning models. However, current PIML methods are generally based on fully observed datasets and mainly suffer from two challenges: (1) effectively utilize partially available information from multiple sources of varying dimensions and fidelity; (2) incorporate physics knowledge while maintaining the mathematical properties of the GP-based model and uncertainty quantification capability of the predictive model. To overcome these limitations, this paper proposes a novel physics-informed machine learning method that incorporates physics prior knowledge and multi-source data by leveraging latent variables through the Bayesian framework. This method effectively utilizes partially available limited information, significantly reduces the need for costly fully observed data, and improves prediction accuracy while maintaining the model property of uncertainty quantification. The developed approach has been demonstrated with two case studies: the vehicle design problem and the battery capacity loss prediction. The case study results demonstrate the effectiveness of the proposed model in complex system design and optimization while propagating uncertainty with limited fully observed data.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Physics-informed machine learning models for ship speed prediction
    Lang, Xiao
    Wu, Da
    Mao, Wengang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [32] Physics-Informed Machine Learning Improves Detection of Head Impacts
    Raymond, Samuel J.
    Cecchi, Nicholas J.
    Alizadeh, Hossein Vahid
    Callan, Ashlyn A.
    Rice, Eli
    Liu, Yuzhe
    Zhou, Zhou
    Zeineh, Michael
    Camarillo, David B.
    ANNALS OF BIOMEDICAL ENGINEERING, 2022, 50 (11) : 1534 - 1545
  • [33] Physics-informed machine learning model for bias temperature instability
    Lee, Jonghwan
    AIP ADVANCES, 2021, 11 (02)
  • [34] Physics-Informed Machine Learning Improves Detection of Head Impacts
    Samuel J. Raymond
    Nicholas J. Cecchi
    Hossein Vahid Alizadeh
    Ashlyn A. Callan
    Eli Rice
    Yuzhe Liu
    Zhou Zhou
    Michael Zeineh
    David B. Camarillo
    Annals of Biomedical Engineering, 2022, 50 : 1534 - 1545
  • [35] Special Issue: Physics-Informed Machine Learning for Advanced Manufacturing
    Guo, Yuebin
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2024, 146 (08):
  • [36] Physics-Informed Machine Learning for Modeling and Control of Dynamical Systems
    Nghiem, Truong X.
    Drgona, Jan
    Jones, Colin
    Nagy, Zoltan
    Schwan, Roland
    Dey, Biswadip
    Chakrabarty, Ankush
    Di Cairano, Stefano
    Paulson, Joel A.
    Carron, Andrea
    Zeilinger, Melanie N.
    Cortez, Wenceslao Shaw
    Vrabie, Draguna L.
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 3735 - 3750
  • [37] A review of physics-informed machine learning for building energy modeling
    Ma, Zhihao
    Jiang, Gang
    Hu, Yuqing
    Chen, Jianli
    APPLIED ENERGY, 2025, 381
  • [38] Physics-Informed Machine Learning-An Emerging Trend in Tribology
    Marian, Max
    Tremmel, Stephan
    LUBRICANTS, 2023, 11 (11)
  • [39] Wind Farm Modeling with Interpretable Physics-Informed Machine Learning
    Howland, Michael F.
    Dabiri, John O.
    ENERGIES, 2019, 12 (14)
  • [40] Unit Operation and Process Modeling with Physics-Informed Machine Learning
    Li, Haochen
    Spelman, David
    Sansalone, John
    JOURNAL OF ENVIRONMENTAL ENGINEERING, 2024, 150 (04)