Essential protein prediction based on generative adversarial networks

被引:0
|
作者
Lu, Pengli [1 ]
Qiao, Guoxin [1 ]
机构
[1] Lanzhou Univ Technol, Sch Comp & Commun, Lanzhou 730050, Peoples R China
关键词
Essential proteins; deep learning; generative adversarial networks; gene expression; protein-protein interaction networks; IDENTIFYING ESSENTIAL PROTEINS; CENTRALITY; DATABASE; GENOME; IDENTIFICATION;
D O I
10.1142/S0129183125500354
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Essential proteins in cells and organisms play a critical role in maintaining normal life functioning and also provide important support in understanding disease pathogenesis. Although existing machine learning and deep learning methods have made some progress in predicting essential proteins, the use of data augmentation methods to improve model robustness and generalization becomes particularly important due to the critical role of data in training models. However, it remains a challenge to use limited data for data augmentation to improve the accuracy of predicting essential proteins. Therefore, we propose an algorithm for essential protein identification based on generative adversarial networks. First, we input the preprocessed gene expression data into a pre-trained generative adversarial network generator to expand the existing gene expression dataset. Second, features are extracted through the confrontation between the generator and the discriminator in the generative adversarial network and PCA technique is applied to downscale these features to make them more representative. Subsequently, the Node2vec method is applied to capture the rich features in the Protein-Protein Interaction (PPI) networks. Finally, we fuse the extracted gene expression profile features with the features of the PPI network and input them into a deep neural network for classification. Experimental results show that our proposed method has better performance compared to existing methods for predicting essential protein.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Pose transfer based on generative adversarial networks
    Pan, Hao
    Cao, Xincong
    2020 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO PROCESSING AND ARTIFICIAL INTELLIGENCE, 2020, 11584
  • [32] Icon Generation Based on Generative Adversarial Networks
    Yang, Hongyi
    Xue, Chengqi
    Yang, Xiaoying
    Yang, Han
    APPLIED SCIENCES-BASEL, 2021, 11 (17):
  • [33] Image Inpainting Based on Generative Adversarial Networks
    Jiang, Yi
    Xu, Jiajie
    Yang, Baoqing
    Xu, Jing
    Zhu, Junwu
    IEEE ACCESS, 2020, 8 (08): : 22884 - 22892
  • [34] Data Synthesis based on Generative Adversarial Networks
    Park, Noseong
    Mohammadi, Mahmoud
    Gorde, Kshitij
    Jajodia, Sushil
    Park, Hongkyu
    Kim, Youngmin
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2018, 11 (10): : 1071 - 1083
  • [35] Generative Adversarial Networks Based on Cooperative Games
    Luo, Lie
    Cai, Jiewei
    Fan, Zouyang
    Chen, Yumin
    Jiang, Hongbo
    Journal of Network Intelligence, 2024, 9 (01): : 88 - 107
  • [36] Generative Adversarial Networks
    Goodfellow, Ian
    Pouget-Abadie, Jean
    Mirza, Mehdi
    Xu, Bing
    Warde-Farley, David
    Ozair, Sherjil
    Courville, Aaron
    Bengio, Yoshua
    COMMUNICATIONS OF THE ACM, 2020, 63 (11) : 139 - 144
  • [37] DaDL-SChlo: protein subchloroplast localization prediction based on generative adversarial networks and pre-trained protein language model
    Wang, Xiao
    Han, Lijun
    Wang, Rong
    Chen, Haoran
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (03)
  • [38] MADGAN:A microbe-disease association prediction model based on generative adversarial networks
    Hu, Weixin
    Yang, Xiaoyu
    Wang, Lei
    Zhu, Xianyou
    FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [39] Vehicle Lane-Change Trajectory Prediction Model Based on Generative Adversarial Networks
    Wen H.
    Zhang W.
    Zhao S.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2020, 48 (05): : 32 - 40
  • [40] SA-SGAN: A Vehicle Trajectory Prediction Model Based on Generative Adversarial Networks
    Zhou, Danyang
    Wang, Huxiao
    Li, Wei
    Zhou, Yi
    Cheng, Nan
    Lu, Ning
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,