Maximal numerical range of tensor product of two operators

被引:0
|
作者
Taki, Zakaria [1 ]
Moktafi, Houda [2 ]
机构
[1] Univ Mohammed V Rabat, ENS Rabat, Rabat, Morocco
[2] Ibnou Zohr Univ, Fac Sci, Dept Math, Lab Math & Applicat, Agadir, Morocco
关键词
Bounded linear operators; maximal numerical range; tensor product; hyponormal operators; convex hull; dilation;
D O I
10.1080/03081087.2025.2464640
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A and B be two operators acting on two complex Hilbert spaces $ \mathscr {H} $ H and $ \mathscr {K} $ K, respectively. In this paper, we show under some hyponormality conditions, the following equality $$\begin{align*} W_{0}(A\otimes B) = \mathrm{co}\left( W_{0}(A) \cdot W_{0}(B) \right) \end{align*}$$W0(A circle times B)=co(W0(A)& sdot;W0(B)) holds, where $ A\otimes B $ A circle times B, $ W_{0}(\cdot ) $ W0(& sdot;) and $ \mathrm {co}(\cdot ) $ co(& sdot;) denote respectively the tensor product of A and B, the maximal numerical range and convex hull. Furthermore, we provide a necessary and sufficient condition for the operator $ A\otimes B $ A circle times B being hyponormal.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Tensor product of left polaroid operators
    Boasso, Enrico
    Duggal, Bhagwati P.
    ACTA SCIENTIARUM MATHEMATICARUM, 2012, 78 (1-2): : 251 - 264
  • [32] Tensor product of left polaroid operators
    Enrico Boasso
    Bhagwati P. Duggal
    Acta Scientiarum Mathematicarum, 2012, 78 (1-2): : 251 - 264
  • [33] The numerical range and the spectrum of a product of two orthogonal projections
    Klaja, Hubert
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (01) : 177 - 195
  • [34] ESSENTIAL MAXIMAL NUMERICAL RANGE
    FONG, CK
    ACTA SCIENTIARUM MATHEMATICARUM, 1979, 41 (3-4): : 307 - 315
  • [35] A Note on Maximal Numerical Range
    Baghdad, A.
    Kaadoud, M. C.
    JOURNAL OF MATHEMATICAL EXTENSION, 2020, 14 (01) : 117 - 126
  • [36] A NOTE ON THE MAXIMAL NUMERICAL RANGE
    Spitkovsky, Ilya M.
    OPERATORS AND MATRICES, 2019, 13 (03): : 601 - 605
  • [37] Essential numerical range and maximal numerical range of the Aluthge transform
    Ji, Guoxing
    Liu, Ni
    Li, Ze
    LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (04): : 315 - 322
  • [38] Numerical Radii for Tensor Products of Operators
    Hwa-Long Gau
    Kuo-Zhong Wang
    Pei Yuan Wu
    Integral Equations and Operator Theory, 2014, 78 : 375 - 382
  • [39] Numerical Radii for Tensor Products of Operators
    Gau, Hwa-Long
    Wang, Kuo-Zhong
    Wu, Pei Yuan
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 78 (03) : 375 - 382
  • [40] Weighted numerical range and weighted numerical radius for even-order tensor via Einstein product
    Be, Aaisha
    Mishra, Debasisha
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (05) : 1861 - 1888