The Effect of Solution Treatment on the Microstructure and Properties of AlCuCrFe2NiTi0.25 High-Entropy Hardfacing Alloy

被引:0
|
作者
Huang, Jingxuan [1 ]
Su, Yunhai [2 ]
机构
[1] Shenyang Machine Tool Factory, Shenyang 110142, Peoples R China
[2] Shenyang Univ Technol, Coll Mat Sci & Engn, Shenyang 110870, Peoples R China
关键词
high-entropy alloy; plasma surfacing; solution treatment; Laves phase; mechanical resistance; MECHANICAL-PROPERTIES; PHASE; STABILITY; STRENGTH;
D O I
10.3390/cryst15020117
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
With the advancement of modern social science and technology, alloys composed solely of a single principal component are gradually unable to meet people's needs. The concept of a new type of high-entropy alloy has been proposed. At present, high-entropy alloys are mostly prepared by vacuum arc furnace melting and casting methods. To improve this situation, this article uses plasma welding technology to prepare an AlCuCrFe2NiTi0.25 high-entropy alloy on a Q235 steel plate through multi-layer and multi-pass welding using plasma surfacing technology and adopts an appropriate solution treatment on this basis to obtain a higher-performance alloy. The conclusion drawn from different heat treatment processes is as follows: solution treatment was performed on an AlCuCrFe2Ni0.25 high-entropy alloy at a temperature of 1200 degrees C for 2 h, 3 h, and 4 h, respectively. After XRD phase analysis, it was found that the phase types of high-entropy alloys did not change after solution treatment. As the solution time increased, the diffraction peak intensity of the Laves phase gradually decreased. After 3 h of solid solution treatment, room temperature tensile tests were conducted to obtain the tensile strength and elongation of the AlCuCrFe2Ni0.25 high-entropy alloy at room temperature, which were 509 MPa and 23.8%, respectively, exhibiting the optimal comprehensive mechanical properties.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Microstructure and Mechanical Properties of a Multiphase FeCrCuMnNi High-Entropy Alloy
    Shabani, Ali
    Toroghinejad, Mohammad Reza
    Shafyei, Ali
    Loge, Roland E.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2019, 28 (04) : 2388 - 2398
  • [42] Microstructure and Mechanical Properties of a Multiphase FeCrCuMnNi High-Entropy Alloy
    Ali Shabani
    Mohammad Reza Toroghinejad
    Ali Shafyei
    Roland E. Logé
    Journal of Materials Engineering and Performance, 2019, 28 : 2388 - 2398
  • [43] Microstructure and Mechanical Properties of a Refractory CoCrMoNbTi High-Entropy Alloy
    Mina Zhang
    Xianglin Zhou
    Jinghao Li
    Journal of Materials Engineering and Performance, 2017, 26 : 3657 - 3665
  • [44] Microstructure and thermal properties of the cast WMoTaNb high-entropy alloy
    Xiao, Bang
    Jia, Wenpeng
    Liu, Nan
    Wang, Jian
    Zhou, Lian
    MATERIALS CHEMISTRY AND PHYSICS, 2025, 329
  • [45] Processing, Microstructure and Mechanical Properties of the CrMnFeCoNi High-Entropy Alloy
    Gludovatz, Bernd
    George, Easo P.
    Ritchie, Robert O.
    JOM, 2015, 67 (10) : 2262 - 2270
  • [46] Microstructure and mechanical properties of FeCoCrNiNbX high-entropy alloy coatings
    Fang, Qihong
    Chen, Yang
    Li, Jia
    Liu, Yanbin
    Liu, Yong
    PHYSICA B-CONDENSED MATTER, 2018, 550 : 112 - 116
  • [47] Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy
    Guo, N. N.
    Wang, L.
    Luo, L. S.
    Li, X. Z.
    Su, Y. Q.
    Guo, J. J.
    Fu, H. Z.
    MATERIALS & DESIGN, 2015, 81 : 87 - 94
  • [48] Microstructure and Mechanical Properties of a Refractory CoCrMoNbTi High-Entropy Alloy
    Zhang, Mina
    Zhou, Xianglin
    Li, Jinghao
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2017, 26 (08) : 3657 - 3665
  • [49] Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy
    Wang, Yongxiang
    Yang, Yaojun
    Yang, Huijun
    Zhang, Min
    Ma, Shengguo
    Qiao, Junwei
    MATERIALS CHEMISTRY AND PHYSICS, 2018, 210 : 233 - 239
  • [50] Microstructure and Tribological Properties of FeCrCoMnSix High-Entropy Alloy Coatings
    Zhang, Shuling
    Jiang, Di
    Sun, Shengdi
    Zhang, Bo
    COATINGS, 2024, 14 (12):