The non-orientable 4-genus of a knot K in S3 is defined to be the minimum first Betti number of a non-orientable surface F smoothly embedded in B4 so that K bounds F. We will survey the tools used to compute the non-orientable 4-genus, and use various techniques to calculate this invariant for non-alternating 11 crossing knots. We will also view obstructions to a knot bounding a M & ouml;bius band given by the double branched cover of S3 branched over K.
机构:
Google Inc, 1021 Valley St, Seattle, WA 98019 USAGoogle Inc, 1021 Valley St, Seattle, WA 98019 USA
Chen, Linyi
Crider-Phillips, Grant
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oregon, 1585 E 13th Ave, Eugene, OR 97403 USAGoogle Inc, 1021 Valley St, Seattle, WA 98019 USA
Crider-Phillips, Grant
Reinoso, Braeden
论文数: 0引用数: 0
h-index: 0
机构:
Boston Coll, Dept Math, Maloney Hall Fifth Floor,21 St Thomas More Rd, Chestnut Hill, MA 02467 USAGoogle Inc, 1021 Valley St, Seattle, WA 98019 USA
Reinoso, Braeden
Sabloff, Joshua
论文数: 0引用数: 0
h-index: 0
机构:
Haverford Coll, Dept Math, 370 Lancaster Ave, Haverford, PA 19041 USAGoogle Inc, 1021 Valley St, Seattle, WA 98019 USA
Sabloff, Joshua
Yao, Leyu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, EnglandGoogle Inc, 1021 Valley St, Seattle, WA 98019 USA