Durable Antimicrobial Microstructure Surface (DAMS) Enabled by 3D-Printing and ZnO Nanoflowers

被引:0
|
作者
Fnu, Yuqing [1 ,2 ]
Zhang, Shuhuan [3 ]
Peng, Ruonan [1 ]
Silva, Justin [3 ]
Ernst, Olivia [4 ]
Lapizco-Encinas, Blanca H. [4 ]
Liu, Rui [3 ]
Du, Ke [1 ]
机构
[1] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA
[3] Rochester Inst Technol, Dept Mech Engn, Rochester, NY 14623 USA
[4] Rochester Inst Technol, Dept Biomed Engn, Rochester, NY 14623 USA
基金
美国国家卫生研究院;
关键词
CONTROLLABLE SYNTHESIS; BIOFILM FORMATION; NANOPARTICLES; ANTIBACTERIAL; MECHANISMS; TOXICITY; DESIGN; TIO2;
D O I
10.1021/acs.langmuir.4c02764
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Numerous studies have been trying to create nanomaterial-based antimicrobial surfaces to prevent infections due to bacterial growth. One major challenge in real-world applications of these surfaces is their mechanical durability. In this study, we introduce durable antimicrobial microstructure surface (DAMS), which integrates DLP 3D-printed microstructures with zinc oxide (ZnO) nanoflowers. The microstructures function as protection armor for the nanoflowers during abrasion. The antimicrobial ability was evaluated by immersing in 2E8 CFU/mL Escherichia coli (E. coli) suspension and then evaluated using electron microscopy. Our results indicated that DAMS reduced bacterial coverage by more than 90% after 12 h of incubation and approximately 50% after 48 h of incubation before abrasion. More importantly, bacterial coverage was reduced by approximately 50% after 2 min of abrasion with a tribometer, and DAMS remains effective even after 6 min of abrasion. These findings highlight the potential of DAMS as an affordable, scalable, and durable antimicrobial surface for various biomedical applications.
引用
收藏
页码:3027 / 3032
页数:6
相关论文
共 50 条
  • [41] 3D-Printing Virtual Simulation Lab
    Singhal, Ishant
    Satsangee, Guru Ratan
    Bhardwaj, Lakshya
    Sharma, Gaurang S.
    Chandrakar, Anand Swarup
    Gupta, Hritav
    Malik, Gargi
    Tyagi, Bobby
    Sahai, Ankit
    Sharma, Rahul Swarup
    IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, 2024, 17 : 1530 - 1543
  • [42] Opportunities of 3D-Printing in Steel Construction
    Lange, Joerg
    STAHLBAU, 2020, 89 (12) : 955 - 955
  • [43] Continuous 3D-printing for additive manufacturing
    Guenther, Daniel
    Heymel, Bastian
    Guenther, Johannes Franz
    Ederer, Ingo
    RAPID PROTOTYPING JOURNAL, 2014, 20 (04) : 320 - 327
  • [44] 3D-printing and advanced manufacturing for electronics
    Alejandro H. Espera
    John Ryan C. Dizon
    Qiyi Chen
    Rigoberto C. Advincula
    Progress in Additive Manufacturing, 2019, 4 : 245 - 267
  • [45] 3D-Printing of Personalized Assistive Technology
    Berger, Veronika Maria
    Nussbaum, Gerhard
    Emminger, Carina
    Major, Zoltan
    COMPUTERS HELPING PEOPLE WITH SPECIAL NEEDS, ICCHP 2018, PT II, 2018, 10897 : 135 - 142
  • [46] Incorporating reinforcement in 3D-printing with concrete
    Mechtcherine, Viktor
    Nerella, Venkatesh Naidu
    BETON- UND STAHLBETONBAU, 2018, 113 (07) : 496 - 504
  • [47] DEVELOPING COMPOSITE WOOD FOR 3D-PRINTING
    Tan, Rachel
    Sia, Chin Kiat
    Tee, Yong Kiat
    Koh, Kendall
    Dritsas, Stylianos
    PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON COMPUTER-AIDED ARCHITECTURAL DESIGN RESEARCH IN ASIA (CAADRIA 2017): PROTOCOLS, FLOWS AND GLITCHES, 2017, : 831 - 840
  • [48] The upcoming 3D-printing revolution in microfluidics
    Bhattacharjee, Nirveek
    Urrios, Arturo
    Kanga, Shawn
    Folch, Albert
    LAB ON A CHIP, 2016, 16 (10) : 1720 - 1742
  • [49] Quality Assurance in Medical 3D-Printing
    Kanters, Djim
    de Vries, Anke
    Boon, Henk
    Urbach, Joost
    Becht, Arjen
    Kooistra, Homme-Auke
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2018, VOL 1, 2019, 68 (01): : 669 - 674
  • [50] 3D-printing yields structured light
    Siddharth Ramachandran
    Nature Photonics, 2022, 16 : 618 - 619