Onboard Health Estimation using Distribution of Relaxation Times for Lithium-ion Batteries

被引:0
|
作者
Khan, Muhammad Aadil [1 ]
Thatipamula, Sai [1 ]
Onori, Simona [1 ]
机构
[1] Stanford Univ, Dept Energy Sci & Engn, Stanford, CA 94305 USA
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 28期
关键词
Lithium-ion battery; SOH estimation; Machine learning; Long short-term memory; Electrochemical impedance spectroscopy; Distribution of relaxation times;
D O I
10.1016/j.ifacol.2025.01.113
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Real-life batteries tend to experience a range of operating conditions, and undergo degradation due to a combination of both calendar and cycling aging. Onboard health estimation models typically use cycling aging data only, and account for at most one operating condition e.g., temperature, which can limit the accuracy of the models for state-of-health (SOH) estimation. In this paper, we utilize electrochemical impedance spectroscopy (EIS) data from 5 calendar-aged and 17 cycling-aged cells to perform SOH estimation under various operating conditions. The EIS curves are deconvoluted using the distribution of relaxation times (DRT) technique to map them onto a function g which consists of distinct timescales representing different resistances inside the cell. These DRT curves, g, are then used as inputs to a long short-term memory (LSTM)-based neural network model for SOH estimation. We validate the model performance by testing it on ten different test sets, and achieve an average RMSPE of 1.69% across these sets. Copyright (c) 2024 The Authors.
引用
收藏
页码:917 / 922
页数:6
相关论文
共 50 条
  • [21] A State of Health Estimation Framework for Lithium-Ion Batteries Using Transfer Components Analysis
    Jia, Bowen
    Guan, Yong
    Wu, Lifeng
    ENERGIES, 2019, 12 (13)
  • [22] Fast and Robust Estimation of Lithium-ion Batteries State of Health Using Ensemble Learning
    Sui, Xin
    He, Shan
    Vilsen, Seren Byg
    Teodorescu, Remus
    Stroe, Daniel-Ioan
    2021 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2021, : 1393 - 1399
  • [23] State of Charge and Health Estimation For Lithium-Ion Batteries Using Recursive Least Squares
    Wei, Jingwen
    Chen, Chunlin
    2020 5TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (ICARM 2020), 2020, : 686 - 689
  • [24] Inline state of health estimation of lithium-ion batteries using state of charge calculation
    Sepasi, Saeed
    Ghorbani, Reza
    Liaw, Bor Yann
    JOURNAL OF POWER SOURCES, 2015, 299 : 246 - 254
  • [25] State of Health Estimation of Lithium-Ion Batteries Using Data Augmentation and Feature Mapping
    Yao, Wei
    Lai, Rucong
    Tian, Yong
    Li, Xiaoyu
    Tian, Jindong
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (01): : 4895 - 4905
  • [26] Improving SOH estimation for lithium-ion batteries using TimeGAN
    Seol, Sujin
    Lee, Jungeun
    Yoon, Jaewoo
    Kim, Byeongwoo
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (04):
  • [27] Health Monitoring of Lithium-ion Batteries
    Sood, Bhanu
    Osterman, Michael
    Pecht, Michael
    2013 10TH ANNUAL IEEE SYMPOSIUM ON PRODUCT COMPLIANCE ENGINEERING (ISPCE), 2013, : 35 - 40
  • [28] State Of Health Estimation of Lithium-ion Batteries Based On Regression Techniques
    Azizi, Chaima
    Ben Ali, Jaouher
    2017 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND DIAGNOSIS (ICCAD), 2017, : 493 - 498
  • [29] State of charge and state of health estimation strategies for lithium-ion batteries
    Wang, Nanlan
    Xia, Xiangyang
    Zeng, Xiaoyong
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2023, 18 : 443 - 448
  • [30] Wavelet Based Relative State of Health Estimation for Lithium-Ion Batteries
    Xu, Jun
    Mei, Xuesong
    Wang, Xiao
    Zhao, Yunfei
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 3101 - 3106