Gender classification of product reviewers in China: a data-driven approach

被引:0
|
作者
Wang, Jing [1 ]
Yan, Xiangbin [2 ]
Zhu, Bin [3 ]
机构
[1] Commun Univ China, Sch Econ & Management, Dept Management Sci & Engn, 1 Dingfuzhuang East St, Beijing, Peoples R China
[2] Univ Sci & Technol Beijing, Donlinks Sch Econ & Management, Dept Management Sci & Engn, 30 Xueyuan Rd, Beijing, Peoples R China
[3] Oregon State Univ, Coll Business, Dept Business Informat Syst, 2751 SW Jefferson Way, Corvallis, OR USA
基金
中国国家自然科学基金;
关键词
Text mining; Gender classification; Chinese gender lexicon; Na & iuml; ve Bayesian; BP neural network; Support vector machines; ONLINE; DISCOURSE; EMOTION; AUTHOR;
D O I
10.1007/s10799-024-00443-0
中图分类号
G25 [图书馆学、图书馆事业]; G35 [情报学、情报工作];
学科分类号
1205 ; 120501 ;
摘要
Online product discussion forums have become essential resources for marketers seeking to understand market dynamics and consumer preferences. Identifying the gender of forum participants can further enhance the effectiveness and efficiency of marketing efforts. However, the relationship between linguistic features and gender classification often varies due to contextual factors such as genres, social networks, and social classes. Recognizing that the discriminatory power of gender markers changes with context, this study proposes and validates a framework to guide the adoption of existing gender classification systems specifically for online product discussions. We demonstrate that beyond optimizing the classification methods themselves, performance can be improved by strategically applying these methods to archived discussion data. Our findings reveal that, for a given classification method and discussion forum, the size of the input data significantly influences performance, with an optimal data size existing to achieve the best results.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] ENRICHMENT, BORROWING, AND MINING: A DATA-DRIVEN APPROACH TO COLONOSCOPIC LESION CLASSIFICATION
    Tan, Shuangyi
    Du, Yuhao
    Wu, ZhenHua
    Fan, Dejun
    Lin, Xutao
    Li, Zhen
    Wan, Xiang
    Li, Guanbin
    IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI 2024, 2024,
  • [22] Data-driven auditing: A predictive modeling approach to fraud detection and classification
    Singh, Nitin
    Lai, Kee-hung
    Vejvar, Markus
    Cheng, T. C. Edwin
    JOURNAL OF CORPORATE ACCOUNTING AND FINANCE, 2019, 30 (03): : 64 - 82
  • [23] Classification of metal ions according to their complexing properties: a data-driven approach
    Pletnev, IV
    Zernov, VV
    ANALYTICA CHIMICA ACTA, 2002, 455 (01) : 131 - 142
  • [24] Data-Driven Classification of Screwdriving Operations
    Aronson, Reuben M.
    Bhatia, Ankit
    Jia, Zhenzhong
    Guillame-Bert, Mathieu
    Bourne, David
    Dubrawski, Artur
    Mason, Matthew T.
    2016 INTERNATIONAL SYMPOSIUM ON EXPERIMENTAL ROBOTICS, 2017, 1 : 244 - 253
  • [25] Data-driven signal detection and classification
    Sayeed, AM
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 3697 - 3700
  • [26] Innovation: A data-driven approach
    Kusiak, Andrew
    INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2009, 122 (01) : 440 - 448
  • [27] Approach to data-driven learning
    Markov, Z.
    International Workshop on Fundamentals of Artificial Intelligence Research, 1991,
  • [28] AN APPROACH TO DATA-DRIVEN LEARNING
    MARKOV, Z
    LECTURE NOTES IN ARTIFICIAL INTELLIGENCE, 1991, 535 : 127 - 140
  • [29] Framework for Data Analytics in Data-Driven Product Planning
    Massmann, Melina
    Meyer, Maurice
    Frank, Maximilian
    von Enzberg, Sebastian
    Kuehn, Arno
    Dumitrescu, Roman
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON SYSTEM-INTEGRATED INTELLIGENCE (SYSINT 2020): SYSTEM-INTEGRATED INTELLIGENCE - INTELLIGENT, FLEXIBLE AND CONNECTED SYSTEMS IN PRODUCTS AND PRODUCTION, 2020, 52 : 350 - 355
  • [30] A Data-Driven Approach for Winter Precipitation Classification Using Weather Radar and NWP Data
    Seo, Bong-Chul
    ATMOSPHERE, 2020, 11 (07)